模型中心
FreeAnchor
FreeAnchor
vision
detection
FreeAnchor (COCO2017预训练权重)
from megengine import hub
model = hub.load(
"megengine/models",
"freeanchor_res50_coco_3x_800size",
pretrained=True,
use_cache=False,
)
model.eval()
models_api = hub.import_module(
"megengine/models",
git_host="github.com",
)
所有预训练模型希望数据被正确预处理。
模型要求输入BGR的图片, 同时需要等比例缩放到:短边和长边分别不超过800/1333
最后做归一化处理 (均值为: [103.530, 116.280, 123.675]
, 标准差为: [57.375, 57.120, 58.395]
)。
下面是一段处理一张图片的样例代码。
# Download an example image from the megengine data website
import urllib
url, filename = ("https://data.megengine.org.cn/images/cat.jpg", "cat.jpg")
try: urllib.URLopener().retrieve(url, filename)
except: urllib.request.urlretrieve(url, filename)
# Read and pre-process the image
import cv2
import megengine as mge
image = cv2.imread("cat.jpg")
data, im_info = models_api.DetEvaluator.process_inputs(image, 800, 1333)
predictions = model(image=mge.tensor(data), im_info=mge.tensor(im_info))
print(predictions)
模型描述
目前我们提供了在COCO2017数据集上预训练的FreeAnchor模型, 性能如下:
model | mAP<br>@5-95 |
---|---|
freeanchor-res18-coco-3x-800size | 38.1 |
freeanchor-res34-coco-3x-800size | 41.1 |
freeanchor-res50-coco-3x-800size | 42.1 |
freeanchor-res101-coco-3x-800size | 43.9 |
freeanchor-resx101-coco-2x-800size | 44.9 |
参考文献
- FreeAnchor: Learning to Match Anchors for Visual Object Detection Xiaosong Zhang, Fang Wan, Chang Liu, Rongrong Ji and Qixiang Ye. Neural Information Processing Systems (NeurIPS), 2019.
- Microsoft COCO: Common Objects in Context Tsung-Yi Lin, Michael Maire, Serge Belongie, James Hays, Pietro Perona, Deva Ramanan, Piotr Dollár, and C Lawrence Zitnick. European Conference on Computer Vision (ECCV), 2014.