RNNCell¶
- class RNNCell(input_size, hidden_size, bias=True, nonlinearity='tanh')[源代码]¶
- 一个使用 tanh 或 ReLU 非线性的 Elman RNN 单元 \[h' = \tanh(W_{ih} x + b_{ih} + W_{hh} h + b_{hh})\]- 如果 - nonlinearity是 ‘relu’ ,那么会使用 ReLU 代替 tanh。- 参数
 - 形状:
- 输入:input,hidden
- input: (batch, input_size). Tensor containing input features. hidden: (batch, hidden_size). Tensor containing the initial hidden state for each element in the batch. Defaults to zero if not provided. 
 
- 输出: h’
- h’: (batch, hidden_size). Tensor containing the next hidden state for each element in the batch. 
 
 
 - 实际案例 - import numpy as np import megengine as mge import megengine.module as M m = M.RNNCell(10, 20) inp = mge.tensor(np.random.randn(3, 10), dtype=np.float32) hx = mge.tensor(np.random.randn(3, 20), dtype=np.float32) out = m(inp, hx) print(out.numpy().shape) - 输出: - (3, 20)