LSTM¶
- class LSTM(*args, **kwargs)[源代码]¶
将多层 LSTM 应用于输入序列。
对于输入序列中的每个元素,每层都计算以下函数:
\[\begin{split}\begin{array}{ll} \\ i_t = \sigma(W_{ii} x_t + b_{ii} + W_{hi} h_{t-1} + b_{hi}) \\ f_t = \sigma(W_{if} x_t + b_{if} + W_{hf} h_{t-1} + b_{hf}) \\ g_t = \tanh(W_{ig} x_t + b_{ig} + W_{hg} h_{t-1} + b_{hg}) \\ o_t = \sigma(W_{io} x_t + b_{io} + W_{ho} h_{t-1} + b_{ho}) \\ c_t = f_t \odot c_{t-1} + i_t \odot g_t \\ h_t = o_t \odot \tanh(c_t) \\ \end{array}\end{split}\]其中 \(h_t\) 是时间 t 的 hidden state, \(c_t\) 是时间 t 的 cell state, \(x_t\) 是时间 t 的输入, :math: h_{t-1} 是时间 t-1 的层的 hidden state 或时间 0 的初始 hidden state, \(i_t\), \(f_t\), \(g_t\), \(o_t\) 分别是输入、遗忘、单元和输出门。 \(\sigma\) 是sigmoid函数, \(\odot\) 是 Hadamard 积。
在多层LSTM中, \(l\) 层(\(l >= 2\))的输入 \(x^{(l)}_t\) 是前一层的 hidden state \(h^{(l-1)}_t\) 乘以 dropout \(delta^{(l-1)}_t\),其中每个 \(delta^{(l-1)}_t\) 是一个伯努利随机变量,其概率
dropout
为 \(0\).If
proj_size > 0
is specified, LSTM with projections will be used. This changes the LSTM cell in the following way. First, the dimension of \(h_t\) will be changed fromhidden_size
toproj_size
(dimensions of \(W_{hi}\) will be changed accordingly). Second, the output hidden state of each layer will be multiplied by a learnable projection matrix: \(h_t = W_{hr}h_t\). Note that as a consequence of this, the output of LSTM network will be of different shape as well. See Inputs/Outputs sections below for exact dimensions of all variables. You can find more details in Long Short-Term Memory Based Recurrent Neural Network Architectures for Large Vocabulary Speech Recognition<https://arxiv.org/abs/1402.1128>.- 参数
input_size (
int
) – The number of expected features in the input x.hidden_size (
int
) – The number of features in the hidden state h.num_layers (
int
) – Number of recurrent layers. E.g., settingnum_layers=2
would mean stacking two LSTMs together to form a stacked LSTM, with the second LSTM taking in outputs of the first LSTM and computing the final results. Default: 1.bias (
bool
) – IfFalse
, then the layer does not use bias weights b_ih and b_hh. Default:True
.batch_first (
bool
) – IfTrue
, then the input and output tensors are provided as (batch, seq, feature) instead of (seq, batch, feature). Note that this does not apply to hidden or cell states. See the Inputs/Outputs sections below for details. Default:False
.dropout (
float
) – If non-zero, introduces a Dropout layer on the outputs of each LSTM layer except the last layer, with dropout probability equal todropout
. Default: 0.bidirectional (
bool
) – IfTrue
, becomes a bidirectional LSTM. Default:False
.proj_size (
int
) – If> 0
, will use LSTM with projections of corresponding size. Default: 0.
- Shape:
- Inputs: input, (h_0, c_0)
- input: \((L, N, H_{in})\) when
batch_first=False
or \((N, L, H_{in})\) whenbatch_first=True
. Containing the features of the input sequence.
- h_0: \((D * \text{num\_layers}, N, H_{out})\). Containing the initial hidden
state for each element in the batch. Defaults to zeros if (h_0, c_0) is not provided.
- c_0: \((D * \text{num\_layers}, N, H_{cell})\). Containing the initial cell
state for each element in the batch. Defaults to zeros if (h_0, c_0) is not provided.
其中:
\[\begin{split}\begin{aligned} N ={} & \text{batch size} \\ L ={} & \text{sequence length} \\ D ={} & 2 \text{ if bidirectional=True otherwise } 1 \\ H_{in} ={} & \text{input\_size} \\ H_{cell} ={} & \text{hidden\_size} \\ H_{out} ={} & \text{proj\_size if } \text{proj\_size}>0 \text{ otherwise hidden\_size} \\ \end{aligned}\end{split}\]- input: \((L, N, H_{in})\) when
- Outputs: output, (h_n, c_n)
- output: \((L, N, D * H_{out})\) when
batch_first=False
or \((N, L, D * H_{out})\) whenbatch_first=True
. Containing the output features (h_t) from the last layer of the LSTM, for each t.
h_n: \((D * \text{num\_layers}, N, H_{out})\). Containing the final hidden state for each element in the batch. c_n: \((D * \text{num\_layers}, N, H_{cell})\). Containing the final cell state for each element in the batch.
- output: \((L, N, D * H_{out})\) when
实际案例
import numpy as np import megengine as mge import megengine.module as M m = M.LSTM(10, 20, 2, batch_first=False, bidirectional=True, bias=True) inp = mge.tensor(np.random.randn(6, 30, 10), dtype=np.float32) hx = mge.tensor(np.random.randn(4, 30, 20), dtype=np.float32) cx = mge.tensor(np.random.randn(4, 30, 20), dtype=np.float32) out, (hn, cn) = m(inp,(hx,cx)) print(out.numpy().shape)
输出:
(6, 30, 40)