InstanceNorm¶
- class InstanceNorm(num_channels, eps=1e-05, affine=True, **kwargs)[源代码]¶
Applies Instance Normalization over a mini-batch of inputs Refer to Instance Normalization
\[y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta\]The mean and standard-deviation are calculated per-dimension separately for each object in a mini-batch. \(\\gamma\) and \(\\beta\) are learnable affine transform parameters of attr:num_channels if
affine
isTrue
. Note that InstanceNorm equals using GroupNorm with num_groups = num_channels.- 参数
num_channels (int) – number of channels expected in input
eps – 添加到分母的单个值,增加数值稳定性。默认:1e-5
affine – this module has learnable affine parameters (weight, bias) when affine is set to be True.
- 形状:
Input: \((N, C, H, W)\) (now only support NCHW format tensor)
Output: \((N, C, H, W)\) (same shape as input)
实际案例
>>> import numpy as np >>> inp = Tensor(np.arange(2 * 3 * 4 * 4).astype(np.float32).reshape(2, 3, 4, 4)) >>> m = M.InstanceNorm(3) >>> out = m(inp) >>> out.numpy().shape (2, 3, 4, 4)