megengine.module.normalization 源代码

import typing as T

import numpy as np

import megengine as mge
import megengine.functional as F
from megengine import Parameter

from ..logger import get_logger
from .init import ones_, zeros_
from .module import Module


[文档]class GroupNorm(Module): r"""Applies Group Normalization over a mini-batch of inputs Refer to `Group Normalization <https://arxiv.org/abs/1803.08494>`__ .. math:: y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta The mean and standard-deviation are calculated separately over the each group. :math:`\\gamma` and :math:`\\beta` are learnable affine transform parameters of attr:`num_channels` if :attr:`affine` is ``True``. Args: num_groups (int): number of groups that divided from channels. num_channels (int): number of channels expected in input eps: a value added to the denominator for numerical stability. Default: 1e-5 affine: this module has learnable affine parameters (weight, bias) when affine is set to be True. Shape: - Input: :math:`(N, C, H, W)` (now only support NCHW format tensor) - Output: :math:`(N, C, H, W)` (same shape as input) Examples: >>> import numpy as np >>> inp = Tensor(np.arange(2 * 3 * 4 * 4).astype(np.float32).reshape(2, 3, 4, 4)) >>> m = M.GroupNorm(3, 3) >>> out = m(inp) >>> out.numpy().shape (2, 3, 4, 4) """ def __init__(self, num_groups, num_channels, eps=1e-5, affine=True, **kwargs): super().__init__(**kwargs) assert num_channels % num_groups == 0 self.num_groups = num_groups self.num_channels = num_channels self.eps = eps self.affine = affine if self.affine: self.weight = Parameter(np.ones(num_channels, dtype=np.float32)) self.bias = Parameter(np.zeros(num_channels, dtype=np.float32)) else: self.weight = None self.bias = None self.reset_parameters() def reset_parameters(self): if self.affine: ones_(self.weight) zeros_(self.bias) def forward(self, x): x = F.nn.group_norm( x, self.num_groups, self.affine, self.weight, self.bias, self.eps ) return x def _module_info_string(self) -> str: s = ( "groups={num_groups}, channels={num_channels}, " "eps={eps}, affine={affine}" ) return s.format(**self.__dict__)
[文档]class InstanceNorm(Module): r"""Applies Instance Normalization over a mini-batch of inputs Refer to `Instance Normalization <https://arxiv.org/abs/1607.08022>`__ .. math:: y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta The mean and standard-deviation are calculated per-dimension separately for each object in a mini-batch. :math:`\\gamma` and :math:`\\beta` are learnable affine transform parameters of attr:`num_channels` if :attr:`affine` is ``True``. Note that InstanceNorm equals using GroupNorm with num_groups = num_channels. Args: num_channels (int): number of channels expected in input eps: a value added to the denominator for numerical stability. Default: 1e-5 affine: this module has learnable affine parameters (weight, bias) when affine is set to be True. Shape: - Input: :math:`(N, C, H, W)` (now only support NCHW format tensor) - Output: :math:`(N, C, H, W)` (same shape as input) Examples: >>> import numpy as np >>> inp = Tensor(np.arange(2 * 3 * 4 * 4).astype(np.float32).reshape(2, 3, 4, 4)) >>> m = M.InstanceNorm(3) >>> out = m(inp) >>> out.numpy().shape (2, 3, 4, 4) """ def __init__(self, num_channels, eps=1e-05, affine=True, **kwargs): super().__init__(**kwargs) self.num_channels = num_channels self.eps = eps self.affine = affine if self.affine: self.weight = Parameter(np.ones(num_channels, dtype="float32")) self.bias = Parameter(np.zeros(num_channels, dtype="float32")) else: self.weight = None self.bias = None self.reset_parameters() def reset_parameters(self): if self.affine: ones_(self.weight) zeros_(self.bias) def forward(self, x): x = F.nn.instance_norm(x, self.affine, self.weight, self.bias, self.eps) return x def _module_info_string(self) -> str: s = "channels={num_channels}, eps={eps}, affine={affine}" return s.format(**self.__dict__)
[文档]class LayerNorm(Module): r"""Applies Layer Normalization over a mini-batch of inputs Refer to `Layer Normalization <https://arxiv.org/pdf/1607.06450v1.pdf>`_ .. math:: y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta The mean and standard-deviation are calculated separately over the last certain number dimensions which have to be of the shape specified by :attr:`normalized_shape`. :math:`\\gamma` and :math:`\\beta` are learnable affine transform parameters of :attr:`normalized_shape` if :attr:`affine` is ``True``. The standard-deviation is calculated via the biased estimator. .. note:: Unlike Batch Normalization and Instance Normalization, which applies scalar scale and bias for each entire channel/plane, Layer Normalization applies per-element scale and bias. Args: normalized_shape(int or tuple): input shape from an expected input of size size :math:`[*, normalized\_shape[0], normalized\_shape[1], ..., normalized\_shape[-1]]`. If it is a single integer, this module will normalize over the last dimension which is expected to be of that specific size. eps: a value added to the denominator for numerical stability. Default: 1e-5 affine: this module has learnable affine parameters (weight, bias) when affine is set to be True. Shape: - Input: :math:`(N, *)` (2-D, 3-D, 4-D or 5-D tensor) - Output: :math:`(N, *)` (same shape as input) Examples: >>> import numpy as np >>> inp = Tensor(np.arange(2 * 3 * 4 * 4).astype(np.float32).reshape(2, 3, 4, 4)) >>> m = M.LayerNorm((4, 4)) >>> out = m(inp) >>> out.numpy().shape (2, 3, 4, 4) """ def __init__(self, normalized_shape, eps=1e-05, affine=True, **kwargs): super().__init__(**kwargs) if isinstance(normalized_shape, int): normalized_shape = (normalized_shape,) self.normalized_shape = tuple(normalized_shape) self.eps = eps self.affine = affine if self.affine: self.weight = Parameter(np.ones(self.normalized_shape, dtype="float32")) self.bias = Parameter(np.zeros(self.normalized_shape, dtype="float32")) else: self.weight = None self.bias = None self.reset_parameters() def reset_parameters(self): if self.affine: ones_(self.weight) zeros_(self.bias) def forward(self, x): x = F.nn.layer_norm( x, self.normalized_shape, self.affine, self.weight, self.bias, self.eps ) return x def _module_info_string(self) -> str: s = "normalized_shape={normalized_shape}, eps={eps}, affine={affine}" return s.format(**self.__dict__)
class GeneralNorm(Module): r"""Applies General Normalization over a mini-batch of inputs .. math:: y = \frac{x - \mathrm{E}[x]}{ \sqrt{\mathrm{Var}[x] + \epsilon}} * \gamma + \beta The mean and standard-deviation are calculated separately according to the axis given by :attr:`normalized_axis`. :math:`\\gamma` and :math:`\\beta` are learnable affine transform parameters if :attr:`affine` is ``True``. The standard-deviation is calculated via the biased estimator. Args: normalized_shape(int, list or tuple): the shape of input needs to be normalized, normalized_shape must be specified when affine is true. When affine=true, we will directly use this shape to initialize weight/bias. Please ensure that the order is correct. Default: None normalized_axis(int, list or tuple): the axis of input needs to be normalized, one-to-one correspondence between normalized_axis and normalized_shape. Default: -1 eps: a value added to the denominator for numerical stability. Default: 1e-5 affine: this module has learnable affine parameters (weight, bias) when affine is set to be True. Shape: - Input: :math:`(N, *)` (2-D, 3-D, 4-D or 5-D tensor) - Output: :math:`(N, *)` (same shape as input) Examples: >>> import numpy as np >>> inp = Tensor(np.arange(2 * 3 * 4 * 4).astype(np.float32).reshape(2, 3, 4, 4)) >>> m = M.GeneralNorm((2, 3), (0, 1)) >>> out = m(inp) >>> out.numpy().shape (2, 3, 4, 4) >>> m = M.GeneralNorm((3, 4), (1, -2)) # Please be careful. >>> out = m(inp) >>> out.numpy().shape (2, 3, 4, 4) >>> m = M.GeneralNorm((2, 4, 3), (0, 2, 1)) # Incorrect initialization, the order of normalized_axis is incorrect, should be adjusted to m = M.GeneralNorm((2, 3, 4), (0, 1, 2)). >>> m = M.GeneralNorm((2, 4, 3), (0, -2, 1)) # Incorrect initialization, the order of normalized_axis is incorrect, should be adjusted to m = M.GeneralNorm((2, 3, 4), (0, 1, -2)). >>> m = M.GeneralNorm((3, 4), (3, -1)) # Incorrect initialization, because axis=-1 and axis=3 are the same axis, namely axis=3. """ def __init__( self, normalized_shape=None, normalized_axis=0, eps=1e-05, affine=True, **kwargs ): super().__init__(**kwargs) self.eps = eps self.affine = affine if self.affine: assert ( normalized_shape is not None ), "normalized_shape must be specified when affine is true" assert ( normalized_axis is not None ), "normalized_axis must be specified when affine is true" if not isinstance(normalized_axis, T.Sequence): normalized_axis = [normalized_axis] if not isinstance(normalized_shape, T.Sequence): normalized_axis = [normalized_shape] assert isinstance(normalized_axis, (list, tuple)) assert isinstance(normalized_shape, (list, tuple)) assert len(normalized_axis) == len( normalized_shape ), "The size of normalized_axis and normalized_shape are different" assert len(set(normalized_axis)) == len( normalized_axis ), "there are duplicate axis in list normalized_axis" self.weight = Parameter(np.ones(normalized_shape, dtype="float32")) self.bias = Parameter(np.zeros(normalized_shape, dtype="float32")) else: self.weight = None self.bias = None self.normalized_shape = normalized_shape self.normalized_axis = normalized_axis self.reset_parameters() def reset_parameters(self): if self.affine: ones_(self.weight) zeros_(self.bias) def forward(self, x): self.normalized_axis = [ num + x.ndim if num < 0 else num for num in self.normalized_axis ] assert self.normalized_axis == sorted( self.normalized_axis ), "The order of normalized_axis is incorrect, should be {}, but got {}. Please specify the values of axis in the correct order in normalized_axis".format( sorted(self.normalized_axis), self.normalized_axis ) inp_shape = x.shape for i in range(len(self.normalized_axis)): assert ( inp_shape[self.normalized_axis[i]] == self.normalized_shape[i] ), "inp.shape={}, normalized_axis={}, normalized_shape={}, inp.shape[normalized_axis[{}]]({}) != normalized_shape[{}]({})".format( x.shape, self.normalized_axis, self.normalized_shape, i, inp_shape[self.normalized_axis[i]], i, self.normalized_shape[i], ) x = F.nn.general_norm( x, self.normalized_axis, self.affine, self.weight, self.bias, self.eps ) return x def _module_info_string(self) -> str: s = "normalized_shape={normalized_shape}, normalized_axis={normalized_axis}, eps={eps}, affine={affine}" return s.format(**self.__dict__)