megengine.module.Linear

class Linear(in_features, out_features, bias=True, compute_mode='default', **kwargs)[源代码]

对输入进行线性变换。例如,若有输入x,则输出y为:

\[y = xW^T + b\]

其中 \(y_i= \sum_j W_{ij} x_j + b_i\)

参数
  • in_features (int) – 各输入样本的大小。

  • out_features (int) – 各输出样本的大小。

  • bias (bool) – 如果设置为 False ,则该层不会学习加性偏置。默认: True

实际案例

import numpy as np
import megengine as mge
import megengine.module as M

m = M.Linear(in_features=3, out_features=1)
inp = mge.tensor(np.arange(0, 6).astype("float32").reshape(2, 3))
oup = m(inp)
print(oup.numpy().shape)

输出:

(2, 1)

方法

apply(fn)

对当前模块中的所有模块应用函数 fn,包括当前模块本身。

buffers([recursive])

返回该模块中对于buffers的一个可迭代对象。

children(**kwargs)

返回一个可迭代对象,可遍历所有属于当前模块的直接属性的子模块。

disable_quantize([value])

设置 modulequantize_diabled 属性,并返回 module

eval()

当前模块中所有模块的 training 属性(包括自身)置为 False ,并将其切换为推理模式。

forward(x)

load_state_dict(state_dict[, strict])

加载一个参数字典,这个字典通常使用 state_dict 得到。

modules(**kwargs)

返回一个可迭代对象,可以遍历当前模块中的所有模块,包括其本身。

named_buffers([prefix, recursive])

返回可遍历模块中 key 与 buffer 的键值对的可迭代对象,其中 key 为从该模块至 buffer 的点路径(dotted path)。

named_children(**kwargs)

返回可迭代对象,可以遍历属于当前模块的直接属性的所有子模块(submodule)与键(key)组成的”key-submodule”对,其中'key'是子模块对应的属性名。

named_modules([prefix])

返回可迭代对象,可以遍历当前模块包括自身在内的所有其内部模块所组成的key-module键-模块对,其中'key'是从当前模块到各子模块的点路径(dotted path)。

named_parameters([prefix, recursive])

返回一个可迭代对象,可以遍历当前模块中key与 Parameter 组成的键值对。其中 key 是从模块到 Parameter 的点路径(dotted path)。

named_tensors([prefix, recursive])

Returns an iterable for key tensor pairs of the module, where key is the dotted path from this module to the tensor.

parameters([recursive])

返回一个可迭代对象,遍历当前模块中的所有 Parameter

register_forward_hook(hook)

给模块输出注册一个回调函数。

register_forward_pre_hook(hook)

给模块输入注册一个回调函数。

replace_param(params, start_pos[, seen])

Replaces module's parameters with params, used by ParamPack to

reset_parameters()

rtype

None

state_dict([rst, prefix, keep_var])

tensors([recursive])

Returns an iterable for the Tensor of the module.

train([mode, recursive])

当前模块中所有模块的 training 属性(包括自身)置为 mode

zero_grad()

将所有参数的梯度置0。