# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import numpy as np
from ..functional.nn import linear
from ..tensor import Parameter
from . import init
from .module import Module
[文档]class Linear(Module):
r"""Applies a linear transformation to the input. For instance, if input
is x, then output y is:
.. math::
y = xW^T + b
where :math:`y_i= \sum_j W_{ij} x_j + b_i`
Args:
in_features: size of each input sample.
out_features: size of each output sample.
bias: if it's ``False``, the layer will not learn an additional ``bias``.
Default: ``True``
Examples:
.. testcode::
import numpy as np
import megengine as mge
import megengine.module as M
m = M.Linear(in_features=3, out_features=1)
inp = mge.tensor(np.arange(0, 6).astype("float32").reshape(2, 3))
oup = m(inp)
print(oup.numpy().shape)
Outputs:
.. testoutput::
(2, 1)
"""
def __init__(
self,
in_features: int,
out_features: int,
bias: bool = True,
compute_mode: str = "default",
**kwargs
):
super().__init__(**kwargs)
self.out_features = out_features
self.in_features = in_features
w_shape = (out_features, in_features)
self.weight = Parameter(np.zeros(w_shape, dtype=np.float32))
self.bias = None
if bias:
b_shape = (out_features,)
self.bias = Parameter(np.zeros(b_shape, dtype=np.float32))
self.compute_mode = compute_mode
self.reset_parameters()
def _get_fanin(self):
return self.in_features
[文档] def reset_parameters(self) -> None:
fanin = self._get_fanin()
std = np.sqrt(1 / fanin)
init.normal_(self.weight, 0.0, std)
if self.bias is not None:
init.zeros_(self.bias)
def _calc_linear(self, x, weight, bias):
return linear(x, weight, bias, compute_mode=self.compute_mode)
[文档] def forward(self, x):
return self._calc_linear(x, self.weight, self.bias)
def _module_info_string(self) -> str:
return "in_features={}, out_features={}, bias={}".format(
self.in_features, self.out_features, self.bias is not None
)