megengine.functional.nn.l1_loss¶
- l1_loss(pred, label, reduction='mean')[源代码]¶
Calculates the mean absolute error (MAE) between each element in the pred \(x\) and label \(y\).
The mean absolute error can be described as:
\[\ell(x,y) = mean\left(L \right)\]where
\[L = \{l_1,\dots,l_N\}, \quad l_n = \left| x_n - y_n \right|,\]\(x\) and \(y\) are tensors of arbitrary shapes with a total of \(N\) elements each. \(N\) is the batch size.
- 参数
- 返回类型
- 返回
loss value.
实际案例
import numpy as np import megengine as mge import megengine.functional as F ipt = mge.tensor(np.array([3, 3, 3, 3]).astype(np.float32)) tgt = mge.tensor(np.array([2, 8, 6, 1]).astype(np.float32)) loss = F.nn.l1_loss(ipt, tgt) print(loss.numpy())
Outputs:
2.75