megengine.functional.loss 源代码

# -*- coding: utf-8 -*-
# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
import functools

import numpy as np

from ..core.tensor.array_method import _reduce
from ..tensor import Tensor
from .elemwise import abs, log
from .nn import indexing_one_hot, logsigmoid, logsumexp, relu
from .tensor import where

__all__ = [
    "l1_loss",
    "square_loss",
    "cross_entropy",
    "binary_cross_entropy",
    "hinge_loss",
]


def _reduce_output(loss_fn):
    r"""Wrapper to apply canonical reductions to loss outputs."""

    @functools.wraps(loss_fn)
    def reduced_loss_fn(*args, reduction="mean", **kwargs):
        loss = loss_fn(*args, **kwargs)
        if reduction == "none":
            return loss
        elif reduction in ("mean", "sum"):
            return _reduce(reduction)(loss)
        else:
            raise ValueError("{} is not a valid value for reduction".format(reduction))

    return reduced_loss_fn


[文档]@_reduce_output def l1_loss(pred: Tensor, label: Tensor, reduction: str = "mean") -> Tensor: r"""Calculates the mean absolute error (MAE) between each element in the pred :math:`x` and label :math:`y`. The mean absolute error can be described as: .. math:: \ell(x,y) = mean\left(L \right) where .. math:: L = \{l_1,\dots,l_N\}, \quad l_n = \left| x_n - y_n \right|, :math:`x` and :math:`y` are tensors of arbitrary shapes with a total of :math:`N` elements each. :math:`N` is the batch size. Args: pred: predicted result from model. label: ground truth to compare. reduction: the reduction to apply to the output: 'none' | 'mean' | 'sum'. Default: 'mean' Returns: loss value. Examples: .. testcode:: import numpy as np import megengine as mge import megengine.functional as F ipt = mge.tensor(np.array([3, 3, 3, 3]).astype(np.float32)) tgt = mge.tensor(np.array([2, 8, 6, 1]).astype(np.float32)) loss = F.nn.l1_loss(ipt, tgt) print(loss.numpy()) Outputs: .. testoutput:: 2.75 """ diff = pred - label return abs(diff)
[文档]@_reduce_output def square_loss(pred: Tensor, label: Tensor, reduction: str = "mean") -> Tensor: r"""Calculates the mean squared error (squared L2 norm) between each element in the pred :math:`x` and label :math:`y`. The mean squared error can be described as: .. math:: \ell(x, y) = mean\left( L \right) where .. math:: L = \{l_1,\dots,l_N\}, \quad l_n = \left( x_n - y_n \right)^2, :math:`x` and :math:`y` are tensors of arbitrary shapes with a total of :math:`N` elements each. :math:`N` is the batch size. Args: pred: predicted result from model. label: ground truth to compare. reduction: the reduction to apply to the output: 'none' | 'mean' | 'sum'. Default: 'mean' Returns: loss value. Shape: * pred: :math:`(N, *)` where :math:`*` means any number of additional dimensions. * label: :math:`(N, *)`. Same shape as ``pred``. Examples: .. testcode:: import numpy as np import megengine as mge import megengine.functional as F ipt = mge.tensor(np.array([3, 3, 3, 3]).astype(np.float32)) tgt = mge.tensor(np.array([2, 8, 6, 1]).astype(np.float32)) loss = F.nn.square_loss(ipt, tgt) print(loss.numpy()) Outputs: .. testoutput:: 9.75 """ diff = pred - label return diff ** 2
[文档]@_reduce_output def cross_entropy( pred: Tensor, label: Tensor, axis: int = 1, with_logits: bool = True, label_smooth: float = 0, reduction: str = "mean", ) -> Tensor: r"""Computes the multi-class cross entropy loss (using logits by default). By default(``with_logitis`` is True), ``pred`` is assumed to be logits, class probabilities are given by softmax. It has better numerical stability compared with sequential calls to :func:`~.softmax` and :func:`~.cross_entropy`. When using label smoothing, the label distribution is as follows: .. math:: y^{LS}_{k}=y_{k}\left(1-\alpha\right)+\alpha/K where :math:`y^{LS}` and :math:`y` are new label distribution and origin label distribution respectively. k is the index of label distribution. :math:`\alpha` is ``label_smooth`` and :math:`K` is the number of classes. Args: pred: input tensor representing the predicted probability. label: input tensor representing the classification label. axis: an axis along which softmax will be applied. Default: 1 with_logits: whether to apply softmax first. Default: True label_smooth: a label smoothing of parameter that can re-distribute target distribution. Default: 0 reduction: the reduction to apply to the output: 'none' | 'mean' | 'sum'. Default: 'mean' Returns: loss value. Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F data_shape = (1, 2) label_shape = (1, ) pred = tensor(np.array([0, 0], dtype=np.float32).reshape(data_shape)) label = tensor(np.ones(label_shape, dtype=np.int32)) loss = F.nn.cross_entropy(pred, label) print(loss.numpy().round(decimals=4)) Outputs: .. testoutput:: 0.6931 """ n0 = pred.ndim n1 = label.ndim assert n0 == n1 + 1, ( "target ndim must be one less than input ndim; input_ndim={} " "target_ndim={}".format(n0, n1) ) ls = label_smooth if with_logits: logZ = logsumexp(pred, axis) primary_term = indexing_one_hot(pred, label, axis) else: logZ = 0 primary_term = log(indexing_one_hot(pred, label, axis)) if ls is None or type(ls) in (int, float) and ls == 0: return logZ - primary_term if not with_logits: pred = log(pred) return logZ - ls * pred.mean(axis) - (1 - ls) * primary_term
[文档]@_reduce_output def binary_cross_entropy( pred: Tensor, label: Tensor, with_logits: bool = True, reduction: str = "mean", ) -> Tensor: r"""Computes the binary cross entropy loss (using logits by default). By default(``with_logitis`` is True), ``pred`` is assumed to be logits, class probabilities are given by sigmoid. Args: pred: `(N, *)`, where `*` means any number of additional dimensions. label: `(N, *)`, same shape as the input. with_logits: bool, whether to apply sigmoid first. Default: True reduction: the reduction to apply to the output: 'none' | 'mean' | 'sum'. Default: 'mean' Returns: loss value. Examples: .. testcode:: import numpy as np from megengine import tensor import megengine.functional as F pred = tensor(np.array([0, 0], dtype=np.float32).reshape(1, 2)) label = tensor(np.ones((1, 2), dtype=np.float32)) loss = F.nn.binary_cross_entropy(pred, label) print(loss.numpy().round(decimals=4)) Outputs: .. testoutput:: 0.6931 """ if not with_logits: return -(label * log(pred) + (1 - label) * log(1 - pred)) # logsigmoid(pred) and logsigmoid(-pred) has common sub-expression # hopefully the backend would optimize this return -(label * logsigmoid(pred) + (1 - label) * logsigmoid(-pred))
[文档]@_reduce_output def hinge_loss( pred: Tensor, label: Tensor, norm: str = "L1", reduction: str = "mean" ) -> Tensor: r"""Caculates the hinge loss which is often used in SVM. The hinge loss can be described as: .. math:: loss(x, y) = \frac{1}{N}\sum_i\sum_j(max(0, 1 - x_{ij}*y_{ij})) Args: pred: input tensor representing the predicted probability, shape is `(N, C)`. label: input tensor representing the binary classification label, shape is `(N, C)`. norm: specify the norm to caculate the loss, should be "L1" or "L2". reduction: the reduction to apply to the output: 'none' | 'mean' | 'sum'. Default: 'mean' Returns: loss value. Examples: .. testcode:: from megengine import tensor import megengine.functional as F pred = tensor([[0.5, -0.5, 0.1], [-0.6, 0.7, 0.8]], dtype="float32") label = tensor([[1, -1, -1], [-1, 1, 1]], dtype="float32") loss = F.nn.hinge_loss(pred, label) print(loss.numpy()) Outputs: .. testoutput:: 1.5 """ norm = norm.upper() assert norm in ["L1", "L2"], "norm must be L1 or L2" # Converts binary labels to -1/1 labels. loss = relu(1.0 - pred * label) if norm == "L1": return loss.sum(axis=1) else: return (loss ** 2).sum(axis=1)