AdaptiveAvgPool2d¶
- class AdaptiveAvgPool2d(oshp, **kwargs)[源代码]¶
对输入数据进行2D平均池化。
例如,给定形状为 \((N, C, H, W)\) 的输入以及形为 \((kH, kW)\) 的
kernel_size
, 该层产生形状为 \((N, C, H_{out}, W_{out})\) 的输出。生成过程描述如下:\[out(N_i, C_j, h, w) = \frac{1}{kH * kW} \sum_{m=0}^{kH-1} \sum_{n=0}^{kW-1} input(N_i, C_j, stride[0] \times h + m, stride[1] \times w + n)\]kernel_size
和stride
可以从输入输出的形状推断:padding: (0, 0)
stride: (floor(IH / OH), floor(IW / OW))
kernel_size: (IH - (OH - 1) * stride_h, IW - (OW - 1) * stride_w)
- 参数
oshp (Union[Tuple[int, int], int, Tensor]) – the target output shape of the image of the form Height * Width. Can be tuple (H, W) or a single H for a square image H * H.
- Shape:
Input: \((N, C, D_{in}, H_{in}, W_{in})\) or \((C, D_{in}, H_{in}, W_{in})\).
Output: \((N, C, D_{out}, H_{out}, W_{out})\) or \((C, D_{out}, H_{out}, W_{out})\), where \((D_{out}, H_{out}, W_{out})=\text{output\_shape}\).
- 返回
module. The instance of the
AdaptiveAvgPool2d
module.- 返回类型
Return type
实际案例
>>> import numpy as np >>> m = M.AdaptiveAvgPool2d((2, 2)) >>> inp = mge.tensor(np.arange(0, 16).astype("float32").reshape(1, 1, 4, 4)) >>> oup = m(inp) >>> oup.numpy() array([[[[ 2.5, 4.5], [10.5, 12.5]]]], dtype=float32)