megengine.random.poisson¶
- poisson(lam, size=None)¶
Random variable with poisson distribution \(\operatorname{Poisson}(\lambda)\).
The corresponding probability density function is
\[f(k ; \lambda)=\frac{\lambda^{k} e^{-\lambda}}{k !},\]where k is the number of occurrences \(({\displaystyle k=0,1,2...})\).
- Parameters
lam (Union[float, Tensor]) – the lambda parameter of the distribution. Must be positive.
size (Optional[Iterable[int]]) – the size of output tensor. If lam is a scalar and given size is, e.g., (m, n), then the output shape is (m, n). If lam is a Tensor with shape (k, v) and given size is, e.g., (m, n), then the output shape is (m, n, k, v). Default: None.
- Returns
tensor. The random variable with Poisson distribution.
- Return type
Return type
Examples
>>> import megengine.random as rand >>> x = rand.poisson(lam=2., size=(1, 3)) >>> x.numpy() array([[1., 2., 2.]], dtype=float32) >>> lam = mge.Tensor([[1.,1.], ... [10,10]], dtype="float32") >>> x = rand.poisson(lam=lam) >>> x.numpy() array([[ 1., 2.], [11., 11.]], dtype=float32) >>> x = rand.poisson(lam=lam, size=(1,3)) >>> x.numpy() array([[[[ 2., 1.], [10., 8.]],
- [[ 5., 2.],
[10., 10.]],
- [[ 1., 2.],
[ 8., 10.]]]], dtype=float32)