LAMB¶
- class LAMB(params, lr, betas=(0.9, 0.999), eps=1e-08, bias_correction=True, weight_decay=0.0, always_adapt=False)[source]¶
Implements LAMB algorithm.
LAMB is proposed in “Large Batch Optimization for Deep Learning: Training BERT in 76 minutes”.
- Parameters
params (
Union[Iterable[Parameter],dict]) – iterable of parameters to optimize or dicts defining parameter groups.lr (
float) – learning rate.betas (
Tuple[float,float]) – coefficients used for computing running averages of gradient and its square. Default:(0.9, 0.999)eps (
float) – term added to the denominator to improve numerical stability. Default:1e-8bias_correction (
bool) – enables bias correction by1 - beta ** step. Default:Trueweight_decay (
float) – weight decay (L2 penalty). Default:0.0always_adapt (
bool) – apply adaptive lr to0.0weight decay parameter. Default:False