RNNCell¶
- class RNNCell(input_size, hidden_size, bias=True, nonlinearity='tanh')[source]¶
An Elman RNN cell with tanh or ReLU non-linearity.
\[h' = \tanh(W_{ih} x + b_{ih} + W_{hh} h + b_{hh})\]If
nonlinearity
is ‘relu’, then ReLU is used in place of tanh.- Parameters
input_size (
int
) – The number of expected features in the input x.hidden_size (
int
) – The number of features in the hidden state h.bias (
bool
) – IfFalse
, then the layer does not use bias weights b_ih and b_hh. Default:True
.nonlinearity (
str
) – The non-linearity to use. Can be either'tanh'
or'relu'
. Default:'tanh'
- Shape:
- Inputs: input, hidden
input: (batch, input_size). Tensor containing input features. hidden: (batch, hidden_size). Tensor containing the initial hidden state for each element in the batch. Defaults to zero if not provided.
- Outputs: h’
h’: (batch, hidden_size). Tensor containing the next hidden state for each element in the batch.
Examples
import numpy as np import megengine as mge import megengine.module as M m = M.RNNCell(10, 20) inp = mge.tensor(np.random.randn(3, 10), dtype=np.float32) hx = mge.tensor(np.random.randn(3, 20), dtype=np.float32) out = m(inp, hx) print(out.numpy().shape)
Outputs:
(3, 20)