Pad¶
- class Pad(pad_width, mode='constant', constant_val=0.0)[source]¶
Pads the input tensor.
- Parameters
pad_width (Tuple[Tuple[int, int], ...]) – A tuple. Each element in the tuple is the tuple of 2-elements, the 2 elements represent the padding size on both sides of the current dimension,
(front_offset, back_offset)
mode (str) –
One of the following string values. Default:
'constant'
'constant'
: Pads with a constant value.'reflect'
: Pads with the edge values of tensor.'replicate'
: Pads with the reflection of the tensor mirrored on the first and last values of the tensor along each axis.
constant_val (float) – Fill value for
'constant'
padding. Default: 0
- Returns
module. The instance of the
Pad
module.- Return type
Return type
Examples
>>> import numpy as np >>> inp = Tensor([[1., 2., 3.],[4., 5., 6.]]) >>> inp Tensor([[1. 2. 3.] [4. 5. 6.]], device=xpux:0) >>> m = M.Pad(pad_width=((1, 1),), mode="constant") >>> m(inp) Tensor([[0. 0. 0.] [1. 2. 3.] [4. 5. 6.] [0. 0. 0.]], device=xpux:0) >>> m = M.Pad(pad_width=((1, 1),), mode="constant", constant_val=9) >>> m(inp) Tensor([[9. 9. 9.] [1. 2. 3.] [4. 5. 6.] [9. 9. 9.]], device=xpux:0) >>> m = M.Pad(pad_width=((1, 1), (1, 2)), mode="reflect") >>> m(inp) Tensor([[5. 4. 5. 6. 5. 4.] [2. 1. 2. 3. 2. 1.] [5. 4. 5. 6. 5. 4.] [2. 1. 2. 3. 2. 1.]], device=xpux:0) >>> m = M.Pad(pad_width=((1, 1), (1, 2)), mode="replicate") >>> m(inp) Tensor([[1. 1. 2. 3. 3. 3.] [1. 1. 2. 3. 3. 3.] [4. 4. 5. 6. 6. 6.] [4. 4. 5. 6. 6. 6.]], device=xpux:0)