LocalResponseNorm¶
- class LocalResponseNorm(kernel_size=5, k=2.0, alpha=0.0001, beta=0.75, **kwargs)[source]¶
Apply local response normalization to the input tensor.
- Parameters
Example
>>> import numpy as np >>> inp = Tensor(np.arange(25, dtype=np.float32).reshape(1,1,5,5)) >>> GT = np.array([[[[ 0., 0.999925, 1.9994003, 2.9979765, 3.9952066], ... [ 4.9906454, 5.983851, 6.974385, 7.961814, 8.945709 ], ... [ 9.925651, 10.90122, 11.872011, 12.837625, 13.7976675], ... [14.751757, 15.699524, 16.640602, 17.574642, 18.501305 ], ... [19.420258, 20.331186, 21.233786, 22.127764, 23.012836 ]]]]) >>> op = M.LocalResponseNorm(kernel_size=3, k=1.0, alpha=1e-4, beta=0.75) >>> out = op(inp) >>> np.testing.assert_allclose(GT, out.numpy(), rtol=1e-6, atol=1e-6)