Linear¶
- class Linear(in_features, out_features, bias=True, compute_mode='default', **kwargs)[source]¶
Applies a linear transformation to the input. For instance, if input is x, then output y is:
\[y = xW^T + b\]where \(y_i= \sum_j W_{ij} x_j + b_i\)
- Parameters
- Shape:
x: \((*, H_{in})\), where * means any number of dimensions including none where \(H_{in}\) = in_features.
y: \((*, H_{out})\), where all but the last dimension are the same shape as the input where :math:`H_{out} = out_features.
Examples
>>> import numpy as np >>> m = M.Linear(in_features=3, out_features=1) >>> inp = mge.tensor(np.arange(0, 6).astype("float32").reshape(2, 3)) >>> oup = m(inp) >>> oup.numpy().shape (2, 1)