LSTMCell¶
- class LSTMCell(input_size, hidden_size, bias=True)[source]¶
A long short-term memory (LSTM) cell.
\[\begin{split}\begin{array}{ll} i = \sigma(W_{ii} x + b_{ii} + W_{hi} h + b_{hi}) \\ f = \sigma(W_{if} x + b_{if} + W_{hf} h + b_{hf}) \\ g = \tanh(W_{ig} x + b_{ig} + W_{hg} h + b_{hg}) \\ o = \sigma(W_{io} x + b_{io} + W_{ho} h + b_{ho}) \\ c' = f * c + i * g \\ h' = o * \tanh(c') \\ \end{array}\end{split}\]where \(\sigma\) is the sigmoid function, and \(*\) is the Hadamard product.
- Parameters
- Shape:
- Inputs: input, (h_0, c_0)
input: (batch, input_size). Tensor containing input features. h_0: (batch, hidden_size). Tensor containing the initial hidden state for each element in the batch. c_0: (batch, hidden_size). Tensor containing the initial cell state for each element in the batch. If (h_0, c_0) is not provided, both h_0 and c_0 default to zero.
- Outputs: (h_1, c_1)
h_1: (batch, hidden_size). Tensor containing the next hidden state for each element in the batch. c_1: (batch, hidden_size). Tensor containing the next cell state for each element in the batch.
Examples
import numpy as np import megengine as mge import megengine.module as M m = M.LSTMCell(10, 20) inp = mge.tensor(np.random.randn(3, 10), dtype=np.float32) hx = mge.tensor(np.random.randn(3, 20), dtype=np.float32) cx = mge.tensor(np.random.randn(3, 20), dtype=np.float32) hy, cy = m(inp, (hx, cx)) print(hy.numpy().shape) print(cy.numpy().shape)
Outputs:
(3, 20) (3, 20)