megengine.functional.nn.l1_loss¶
- l1_loss(pred, label, reduction='mean')[source]¶
Calculates the mean absolute error (MAE) between each element in the pred \(x\) and label \(y\).
The mean absolute error can be described as:
\[\ell(x,y) = mean\left(L \right)\]where
\[L = \{l_1,\dots,l_N\}, \quad l_n = \left| x_n - y_n \right|,\]\(x\) and \(y\) are tensors of arbitrary shapes with a total of \(N\) elements each. \(N\) is the batch size.
- Parameters
- Return type
- Returns
loss value.
- Shape:
pred
: \((N, *)\) where \(*\) means any number of additional dimensions.label
: \((N, *)\). Same shape aspred
.
Examples
>>> pred = Tensor([3, 3, 3, 3]) >>> label = Tensor([2, 8, 6, 1]) >>> F.nn.l1_loss(pred, label) Tensor(2.75, device=xpux:0) >>> F.nn.l1_loss(pred, label, reduction="none") Tensor([1 5 3 2], dtype=int32, device=xpux:0) >>> F.nn.l1_loss(pred, label, reduction="sum") Tensor(11, dtype=int32, device=xpux:0)