megengine.module.Embedding.from_pretrained¶
- classmethod Embedding.from_pretrained(embeddings, freeze=True, padding_idx=None, max_norm=None, norm_type=None)[源代码]¶
从给定的2维FloatTensor创建词向量实例。
- 参数
embeddings (
Parameter
) – tensor contained weight for the embedding.freeze (
Optional
[bool
]) – ifTrue
, the weight does not get updated during the learning process. Default: True.padding_idx (
Optional
[int
]) – should be set to None, not support Now.max_norm (
Optional
[float
]) – should be set to None, not support Now.norm_type (
Optional
[float
]) – should be set to None, not support Now.
实际案例
import numpy as np import megengine as mge import megengine.module as M weight = mge.tensor(np.array([(1.2,2.3,3.4,4.5,5.6)], dtype=np.float32)) data = mge.tensor(np.array([(0,0)], dtype=np.int32)) embedding = M.Embedding.from_pretrained(weight, freeze=False) output = embedding(data) print(output.numpy())
输出:
[[[1.2 2.3 3.4 4.5 5.6] [1.2 2.3 3.4 4.5 5.6]]]