megengine.functional.nn.roi_align¶
- roi_align(inp, rois, output_shape, mode='average', spatial_scale=1.0, sample_points=2, aligned=True)[源代码]¶
Applies roi align on input feature.
- 参数
inp (
Tensor
) – tensor that represents the input feature, shape is (N, C, H, W).rois (
Tensor
) – N, 5)` boxes. First column is the box index. The other 4 columns arexyxy
.output_shape (
Union
[int
,tuple
,list
]) – height, width)` shape of output rois feature.mode (
str
) – max” or “average”, use max/average align just like max/average pooling. Default: “average”spatial_scale (
float
) – scale the input boxes by this number. Default: 1.0sample_points (
Union
[int
,tuple
,list
]) – number of inputs samples to take for each output sample. 0 to take samples densely. Default: 2aligned (
bool
) – wheather to align the input feature, with aligned=True, we first appropriately scale the ROI and then shift it by -0.5. Default: True
- 返回类型
- 返回
output tensor.
实际案例
import numpy as np from megengine import tensor import megengine.functional as F np.random.seed(42) inp = tensor(np.random.randn(1, 1, 128, 128)) rois = tensor(np.random.random((4, 5))) y = F.vision.roi_align(inp, rois, (2, 2)) print(y.numpy()[0].round(decimals=4))
Outputs:
[[[0.175 0.175 ] [0.1359 0.1359]]]