# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
from abc import abstractmethod
from typing import Tuple, Union
import numpy as np
from ..functional import (
conv1d,
conv2d,
conv3d,
conv_transpose2d,
conv_transpose3d,
deformable_conv2d,
local_conv2d,
relu,
)
from ..tensor import Parameter
from ..utils.tuple_function import _pair, _pair_nonzero, _triple, _triple_nonzero
from . import init
from .module import Module
class _ConvNd(Module):
"""base class for convolution modules, including transposed conv"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int]],
stride: Union[int, Tuple[int, int]],
padding: Union[int, Tuple[int, int]],
dilation: Union[int, Tuple[int, int]],
groups: int,
bias: bool = True,
**kwargs
):
super().__init__(**kwargs)
if in_channels % groups != 0:
raise ValueError("in_channels must be divisible by groups")
if out_channels % groups != 0:
raise ValueError("out_channels must be divisible by groups")
self.in_channels = in_channels
self.out_channels = out_channels
self.kernel_size = kernel_size
self.stride = stride
self.padding = padding
self.dilation = dilation
self.groups = groups
self.weight = Parameter(np.zeros(self._infer_weight_shape(), dtype=np.float32))
self.bias = None
if bias:
self.bias = Parameter(np.zeros(self._infer_bias_shape(), dtype=np.float32))
self.reset_parameters()
@abstractmethod
def _get_fanin(self):
pass
def reset_parameters(self) -> None:
fanin = self._get_fanin()
std = np.sqrt(1 / fanin)
init.normal_(self.weight, 0.0, std)
if self.bias is not None:
init.zeros_(self.bias)
@abstractmethod
def _infer_weight_shape(self):
pass
@abstractmethod
def _infer_bias_shape(self):
pass
def _module_info_string(self):
s = "{in_channels}, {out_channels}, kernel_size={kernel_size}"
if self.stride != (1,) * len(self.stride):
s += ", stride={stride}"
if self.padding != (0,) * len(self.padding):
s += ", padding={padding}"
if self.dilation != (1,) * len(self.dilation):
s += ", dilation={dilation}"
if self.groups != 1:
s += ", groups={groups}"
if self.bias is None:
s += ", bias=False"
return s.format(**self.__dict__)
[文档]class Conv1d(_ConvNd):
r"""Applies a 1D convolution over an input tensor.
For instance, given an input of the size :math:`(N, C_{\text{in}}, H)`,
this layer generates an output of the size
:math:`(N, C_{\text{out}}, H_{\text{out}})` through the
process described as below:
.. math::
\text{out}(N_i, C_{\text{out}_j}) = \text{bias}(C_{\text{out}_j}) +
\sum_{k = 0}^{C_{\text{in}} - 1} \text{weight}(C_{\text{out}_j}, k) \star \text{input}(N_i, k)
where :math:`\star` is the valid 1D cross-correlation operator,
:math:`N` is batch size, :math:`C` denotes number of channels, and
:math:`H` is length of 1D data element.
When `groups == in_channels` and `out_channels == K * in_channels`,
where K is a positive integer, this operation is also known as depthwise
convolution.
In other words, for an input of size :math:`(N, C_{in}, H_{in})`,
a depthwise convolution with a depthwise multiplier `K`, can be constructed
by arguments :math:`(in\_channels=C_{in}, out\_channels=C_{in} \times K, ..., groups=C_{in})`.
Args:
in_channels: number of input channels.
out_channels: number of output channels.
kernel_size: size of weight on spatial dimensions.
stride: stride of the 1D convolution operation.
padding: size of the paddings added to the input on both sides of its
spatial dimensions. Only zero-padding is supported. Default: 0
dilation: dilation of the 1D convolution operation. Default: 1
groups: number of groups into which the input and output channels are divided,
so as to perform a "grouped convolution". When ``groups`` is not 1,
``in_channels`` and ``out_channels`` must be divisible by ``groups``,
and there would be an extra dimension at the beginning of the weight's
shape. Default: 1
bias: whether to add a bias onto the result of convolution. Default: True
conv_mode: Supports `cross_correlation`. Default: `cross_correlation`
compute_mode: When set to "default", no special requirements will be
placed on the precision of intermediate results. When set to "float32",
"float32" would be used for accumulator and intermediate result, but only
effective when input and output are of float16 dtype.
Note:
* ``weight`` usually has shape ``(out_channels, in_channels, kernel_size)`` ,
if groups is not 1, shape will be ``(groups, out_channels // groups, in_channels // groups, kernel_size)``
* ``bias`` usually has shape ``(1, out_channels, 1)``
Examples:
.. testcode::
import numpy as np
import megengine as mge
import megengine.module as M
m = M.Conv1d(in_channels=3, out_channels=1, kernel_size=3)
inp = mge.tensor(np.arange(0, 24).astype("float32").reshape(2, 3, 4))
oup = m(inp)
print(oup.numpy().shape)
Outputs:
.. testoutput::
(2, 1, 2)
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: int,
stride: int = 1,
padding: int = 0,
dilation: int = 1,
groups: int = 1,
bias: bool = True,
conv_mode: str = "cross_correlation",
compute_mode: str = "default",
**kwargs
):
kernel_size = kernel_size
stride = stride
padding = padding
dilation = dilation
self.conv_mode = conv_mode
self.compute_mode = compute_mode
super().__init__(
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
**kwargs,
)
def _get_fanin(self):
kh = self.kernel_size
ic = self.in_channels
return kh * ic
def _infer_weight_shape(self):
group = self.groups
ichl = self.in_channels
ochl = self.out_channels
kh = self.kernel_size
if group == 1:
# Assume format is NCH(W=1)
return (ochl, ichl, kh)
assert (
ichl % group == 0 and ochl % group == 0
), "invalid config: in_channels={} out_channels={} group={}".format(
ichl, ochl, group
)
# Assume format is NCH(W=1)
return (group, ochl // group, ichl // group, kh)
def _infer_bias_shape(self):
# Assume format is NCH(W=1)
return (1, self.out_channels, 1)
[文档] def calc_conv(self, inp, weight, bias):
return conv1d(
inp,
weight,
bias,
self.stride,
self.padding,
self.dilation,
self.groups,
self.conv_mode,
self.compute_mode,
)
[文档] def forward(self, inp):
return self.calc_conv(inp, self.weight, self.bias)
[文档]class Conv2d(_ConvNd):
r"""Applies a 2D convolution over an input tensor.
For instance, given an input of the size :math:`(N, C_{\text{in}}, H, W)`,
this layer generates an output of the size
:math:`(N, C_{\text{out}}, H_{\text{out}}, W_{\text{out}})` through the
process described as below:
.. math::
\text{out}(N_i, C_{\text{out}_j}) = \text{bias}(C_{\text{out}_j}) +
\sum_{k = 0}^{C_{\text{in}} - 1} \text{weight}(C_{\text{out}_j}, k) \star \text{input}(N_i, k)
where :math:`\star` is the valid 2D cross-correlation operator,
:math:`N` is batch size, :math:`C` denotes number of channels,
:math:`H` is height of input planes in pixels, and :math:`W` is
width in pixels.
In general, output feature maps' shapes can be inferred as follows:
input: :math:`(N, C_{\text{in}}, H_{\text{in}}, W_{\text{in}})`
output: :math:`(N, C_{\text{out}}, H_{\text{out}}, W_{\text{out}})` where
.. math::
\text{H}_{out} = \lfloor \frac{\text{H}_{in} + 2 * \text{padding[0]} -
\text{dilation[0]} * (\text{kernel_size[0]} - 1) - 1}{\text{stride[0]}} + 1 \rfloor
.. math::
\text{W}_{out} = \lfloor \frac{\text{W}_{in} + 2 * \text{padding[1]} -
\text{dilation[1]} * (\text{kernel_size[1]} - 1) - 1}{\text{stride[1]}} + 1 \rfloor
When `groups == in_channels` and `out_channels == K * in_channels`,
where K is a positive integer, this operation is also known as depthwise
convolution.
In other words, for an input of size :math:`(N, C_{in}, H_{in}, W_{in})`,
a depthwise convolution with a depthwise multiplier `K`, can be constructed
by arguments :math:`(in\_channels=C_{in}, out\_channels=C_{in} \times K, ..., groups=C_{in})`.
Args:
in_channels: number of input channels.
out_channels: number of output channels.
kernel_size: size of weight on spatial dimensions. If kernel_size is
an :class:`int`, the actual kernel size would be
``(kernel_size, kernel_size)``.
stride: stride of the 2D convolution operation. Default: 1
padding: size of the paddings added to the input on both sides of its
spatial dimensions. Only zero-padding is supported. Default: 0
dilation: dilation of the 2D convolution operation. Default: 1
groups: number of groups into which the input and output channels are divided,
so as to perform a "grouped convolution". When ``groups`` is not 1,
``in_channels`` and ``out_channels`` must be divisible by ``groups``,
and there would be an extra dimension at the beginning of the weight's
shape. Default: 1
bias: whether to add a bias onto the result of convolution. Default: True
conv_mode: Supports `cross_correlation`. Default: `cross_correlation`
compute_mode: When set to "default", no special requirements will be
placed on the precision of intermediate results. When set to "float32",
"float32" would be used for accumulator and intermediate result, but only
effective when input and output are of float16 dtype.
Note:
* ``weight`` usually has shape ``(out_channels, in_channels, height, width)`` ,
if groups is not 1, shape will be ``(groups, out_channels // groups, in_channels // groups, height, width)``
* ``bias`` usually has shape ``(1, out_channels, *1)``
Examples:
.. testcode::
import numpy as np
import megengine as mge
import megengine.module as M
m = M.Conv2d(in_channels=3, out_channels=1, kernel_size=3)
inp = mge.tensor(np.arange(0, 96).astype("float32").reshape(2, 3, 4, 4))
oup = m(inp)
print(oup.numpy().shape)
Outputs:
.. testoutput::
(2, 1, 2, 2)
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int]],
stride: Union[int, Tuple[int, int]] = 1,
padding: Union[int, Tuple[int, int]] = 0,
dilation: Union[int, Tuple[int, int]] = 1,
groups: int = 1,
bias: bool = True,
conv_mode: str = "cross_correlation",
compute_mode: str = "default",
**kwargs
):
kernel_size = _pair_nonzero(kernel_size)
stride = _pair_nonzero(stride)
padding = _pair(padding)
dilation = _pair_nonzero(dilation)
self.conv_mode = conv_mode
self.compute_mode = compute_mode
super().__init__(
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
**kwargs,
)
def _get_fanin(self):
kh, kw = self.kernel_size
ic = self.in_channels
return kh * kw * ic
def _infer_weight_shape(self):
group = self.groups
ichl = self.in_channels
ochl = self.out_channels
kh, kw = self.kernel_size
if group == 1:
# Assume format is NCHW
return (ochl, ichl, kh, kw)
assert (
ichl % group == 0 and ochl % group == 0
), "invalid config: in_channels={} out_channels={} group={}".format(
ichl, ochl, group
)
# Assume format is NCHW
return (group, ochl // group, ichl // group, kh, kw)
def _infer_bias_shape(self):
# Assume format is NCHW
return (1, self.out_channels, 1, 1)
[文档] def calc_conv(self, inp, weight, bias):
return conv2d(
inp,
weight,
bias,
self.stride,
self.padding,
self.dilation,
self.groups,
self.conv_mode,
self.compute_mode,
)
[文档] def forward(self, inp):
return self.calc_conv(inp, self.weight, self.bias)
[文档]class Conv3d(_ConvNd):
r"""Applies a 3D convolution over an input tensor.
For instance, given an input of the size :math:`(N, C_{\text{in}}, T, H, W)`,
this layer generates an output of the size
:math:`(N, C_{\text{out}}, T_{\text{out}}, H_{\text{out}}, W_{\text{out}})` through the
process described as below:
.. math::
\text{out}(N_i, C_{\text{out}_j}) = \text{bias}(C_{\text{out}_j}) +
\sum_{k = 0}^{C_{\text{in}} - 1} \text{weight}(C_{\text{out}_j}, k) \star \text{input}(N_i, k)
where :math:`\star` is the valid 3D cross-correlation operator,
:math:`N` is batch size, :math:`C` denotes number of channels.
When `groups == in_channels` and `out_channels == K * in_channels`,
where K is a positive integer, this operation is also known as depthwise
convolution.
In other words, for an input of size :math:`(N, C_{in}, T_{int}, H_{in}, W_{in})`,
a depthwise convolution with a depthwise multiplier `K`, can be constructed
by arguments :math:`(in\_channels=C_{in}, out\_channels=C_{in} \times K, ..., groups=C_{in})`.
Args:
in_channels: number of input channels.
out_channels: number of output channels.
kernel_size: size of weight on spatial dimensions. If kernel_size is
an :class:`int`, the actual kernel size would be
`(kernel_size, kernel_size, kernel_size)`.
stride: stride of the 3D convolution operation. Default: 1
padding: size of the paddings added to the input on both sides of its
spatial dimensions. Only zero-padding is supported. Default: 0
dilation: dilation of the 3D convolution operation. Default: 1
groups: number of groups into which the input and output channels are divided,
so as to perform a "grouped convolution". When ``groups`` is not 1,
``in_channels`` and ``out_channels`` must be divisible by ``groups``,
and there would be an extra dimension at the beginning of the weight's
shape. Default: 1
bias: whether to add a bias onto the result of convolution. Default: True
conv_mode: Supports `cross_correlation`. Default: `cross_correlation`
Note:
* ``weight`` usually has shape ``(out_channels, in_channels, depth, height, width)`` ,
if groups is not 1, shape will be ``(groups, out_channels // groups, in_channels // groups, depth, height, width)``
* ``bias`` usually has shape ``(1, out_channels, *1)``
Examples:
.. testcode::
import numpy as np
import megengine as mge
import megengine.module as M
m = M.Conv3d(in_channels=3, out_channels=1, kernel_size=3)
inp = mge.tensor(np.arange(0, 384).astype("float32").reshape(2, 3, 4, 4, 4))
oup = m(inp)
print(oup.numpy().shape)
Outputs:
.. testoutput::
(2, 1, 2, 2, 2)
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int, int]],
stride: Union[int, Tuple[int, int, int]] = 1,
padding: Union[int, Tuple[int, int, int]] = 0,
dilation: Union[int, Tuple[int, int, int]] = 1,
groups: int = 1,
bias: bool = True,
conv_mode: str = "cross_correlation",
):
kernel_size = _triple_nonzero(kernel_size)
stride = _triple_nonzero(stride)
padding = _triple(padding)
dilation = _triple_nonzero(dilation)
self.conv_mode = conv_mode
super().__init__(
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
)
def _get_fanin(self):
kt, kh, kw = self.kernel_size
ic = self.in_channels
return kt * kh * kw * ic
def _infer_weight_shape(self):
group = self.groups
ichl = self.in_channels
ochl = self.out_channels
kt, kh, kw = self.kernel_size
if group == 1:
# Assume format is NCTHW
return (ochl, ichl, kt, kh, kw)
assert (
ichl % group == 0 and ochl % group == 0
), "invalid config: in_channels={} out_channels={} group={}".format(
ichl, ochl, group
)
# Assume format is NCTHW
return (group, ochl // group, ichl // group, kt, kh, kw)
def _infer_bias_shape(self):
# Assume format is NCTHW
return (1, self.out_channels, 1, 1, 1)
[文档] def calc_conv(self, inp, weight, bias):
return conv3d(
inp,
weight,
bias,
self.stride,
self.padding,
self.dilation,
self.groups,
self.conv_mode,
)
[文档] def forward(self, inp):
return self.calc_conv(inp, self.weight, self.bias)
[文档]class ConvTranspose2d(_ConvNd):
r"""Applies a 2D transposed convolution over an input tensor.
This module is also known as a deconvolution or a fractionally-strided convolution.
:class:`ConvTranspose2d` can be seen as the gradient of :class:`Conv2d` operation
with respect to its input.
Convolution usually reduces the size of input, while transposed convolution works
the opposite way, transforming a smaller input to a larger output while preserving the
connectivity pattern.
Args:
in_channels: number of input channels.
out_channels: number of output channels.
kernel_size: size of weight on spatial dimensions. If ``kernel_size`` is
an :class:`int`, the actual kernel size would be
``(kernel_size, kernel_size)``.
stride: stride of the 2D convolution operation. Default: 1
padding: size of the paddings added to the input on both sides of its
spatial dimensions. Only zero-padding is supported. Default: 0
dilation: dilation of the 2D convolution operation. Default: 1
groups: number of groups into which the input and output channels are divided,
so as to perform a "grouped convolution". When ``groups`` is not 1,
``in_channels`` and ``out_channels`` must be divisible by ``groups``,
and there would be an extra dimension at the beginning of the weight's
shape. Default: 1
bias: wether to add a bias onto the result of convolution. Default: True
conv_mode: Supports `cross_correlation`. Default: `cross_correlation`
compute_mode: When set to "default", no special requirements will be
placed on the precision of intermediate results. When set to "float32",
"float32" would be used for accumulator and intermediate result, but only
effective when input and output are of float16 dtype.
Note:
* ``weight`` usually has shape ``(in_channels, out_channels, height, width)`` ,
if groups is not 1, shape will be ``(groups, in_channels // groups, out_channels // groups, height, width)``
* ``bias`` usually has shape ``(1, out_channels, *1)``
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int]],
stride: Union[int, Tuple[int, int]] = 1,
padding: Union[int, Tuple[int, int]] = 0,
dilation: Union[int, Tuple[int, int]] = 1,
groups: int = 1,
bias: bool = True,
conv_mode: str = "cross_correlation",
compute_mode: str = "default",
**kwargs
):
kernel_size = _pair_nonzero(kernel_size)
stride = _pair_nonzero(stride)
padding = _pair(padding)
dilation = _pair_nonzero(dilation)
self.conv_mode = conv_mode
self.compute_mode = compute_mode
super().__init__(
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias,
**kwargs,
)
def _get_fanin(self):
kh, kw = self.kernel_size
oc = self.out_channels
return kh * kw * oc
def _infer_weight_shape(self):
group = self.groups
ichl = self.in_channels
ochl = self.out_channels
kh, kw = self.kernel_size
if group == 1:
# Assume format is NCHW
return (ichl, ochl, kh, kw)
assert (
ichl % group == 0 and ochl % group == 0
), "invalid config: in_channels={} out_channels={} group={}".format(
ichl, ochl, group
)
# Assume format is NCHW
return (group, ichl // group, ochl // group, kh, kw)
def _infer_bias_shape(self):
# Assume format is NCHW
return (1, self.out_channels, 1, 1)
[文档] def calc_conv_transpose2d(self, inp, weight, bias):
return conv_transpose2d(
inp,
weight,
bias,
self.stride,
self.padding,
self.dilation,
self.groups,
self.conv_mode,
self.compute_mode,
)
[文档] def forward(self, inp):
return self.calc_conv_transpose2d(inp, self.weight, self.bias)
[文档]class LocalConv2d(Conv2d):
r"""Applies a spatial convolution with untied kernels over an groupped channeled input 4D tensor.
It is also known as the locally connected layer.
Args:
in_channels: number of input channels.
out_channels: number of output channels.
input_height: the height of the input images.
input_width: the width of the input images.
kernel_size: size of weight on spatial dimensions. If kernel_size is
an :class:`int`, the actual kernel size would be
``(kernel_size, kernel_size)``.
stride: stride of the 2D convolution operation. Default: 1
padding: size of the paddings added to the input on both sides of its
spatial dimensions. Only zero-padding is supported. Default: 0
groups: number of groups into which the input and output channels are divided,
so as to perform a "grouped convolution". When ``groups`` is not 1,
``in_channels`` and ``out_channels`` must be divisible by ``groups``. Default: 1
Note:
* ``weight`` usually has shape ``(out_height, out_width, in_channels, height, width, in_channels)`` ,
if groups is not 1, shape will be ``(groups, out_height, out_width, in_channels // groups, height, width, out_channels // groups)``
* ``bias`` usually has shape ``(1, out_channels, *1)``
"""
def __init__(
self,
in_channels: int,
out_channels: int,
input_height: int,
input_width: int,
kernel_size: Union[int, Tuple[int, int]],
stride: Union[int, Tuple[int, int]] = 1,
padding: Union[int, Tuple[int, int]] = 0,
dilation: Union[int, Tuple[int, int]] = 1,
groups: int = 1,
conv_mode: str = "cross_correlation",
**kwargs
):
self.input_height = input_height
self.input_width = input_width
super().__init__(
in_channels,
out_channels,
kernel_size,
stride,
padding,
dilation,
groups,
bias=False,
**kwargs,
)
def _infer_weight_shape(self):
group = self.groups
out_height = (
self.input_height + self.padding[0] * 2 - self.kernel_size[0]
) // self.stride[0] + 1
out_width = (
self.input_width + self.padding[1] * 2 - self.kernel_size[1]
) // self.stride[1] + 1
# Assume format is NCHW
return (
group,
out_height,
out_width,
self.in_channels // group,
self.kernel_size[0],
self.kernel_size[1],
self.out_channels // group,
)
[文档] def forward(self, inp):
return local_conv2d(
inp,
self.weight,
None,
self.stride,
self.padding,
self.dilation,
self.conv_mode,
)
[文档]class ConvRelu2d(Conv2d):
r"""A fused :class:`~.Module` including :class:`~.module.Conv2d` and :func:`~.relu`.
Could be replaced with :class:`~.QATModule` version :class:`~.qat.ConvRelu2d` using :func:`~.quantize.quantize_qat`.
"""
[文档] def forward(self, inp):
return relu(self.calc_conv(inp, self.weight, self.bias))
[文档]class ConvTranspose3d(_ConvNd):
r"""Applies a 3D transposed convolution over an input tensor.
Only support the case that groups = 1 and conv_mode = "cross_correlation".
:class:`ConvTranspose3d` can be seen as the gradient of :class:`Conv3d` operation
with respect to its input.
Convolution3D usually reduces the size of input, while transposed convolution3d
works the opposite way, transforming a smaller input to a larger output while
preserving the connectivity pattern.
Args:
in_channels: number of input channels.
out_channels: number of output channels.
kernel_size: size of weight on spatial dimensions. If ``kernel_size`` is
an :class:`int`, the actual kernel size would be
``(kernel_size, kernel_size, kernel_size)``.
stride: stride of the 3D convolution operation. Default: 1
padding: size of the paddings added to the input on all sides of its
spatial dimensions. Only zero-padding is supported. Default: 0
dilation: dilation of the 3D convolution operation. Default: 1
bias: wether to add a bias onto the result of convolution. Default: True
Note:
* ``weight`` usually has shape ``(in_channels, out_channels, depth, height, width)`` .
* ``bias`` usually has shape ``(1, out_channels, *1)``
"""
def __init__(
self,
in_channels: int,
out_channels: int,
kernel_size: Union[int, Tuple[int, int, int]],
stride: Union[int, Tuple[int, int, int]] = 1,
padding: Union[int, Tuple[int, int, int]] = 0,
dilation: Union[int, Tuple[int, int, int]] = 1,
bias: bool = True,
):
kernel_size = _triple_nonzero(kernel_size)
stride = _triple_nonzero(stride)
padding = _triple(padding)
dilation = _triple_nonzero(dilation)
super().__init__(
in_channels=in_channels,
out_channels=out_channels,
kernel_size=kernel_size,
stride=stride,
padding=padding,
dilation=dilation,
groups=1,
bias=bias,
)
def _get_fanin(self):
kt, kh, kw = self.kernel_size
ic = self.in_channels
return kt * kh * kw * ic
def _infer_weight_shape(self):
ichl = self.in_channels
ochl = self.out_channels
kt, kh, kw = self.kernel_size
return (ichl, ochl, kt, kh, kw)
def _infer_bias_shape(self):
# Assume format is NCTHW
return (1, self.out_channels, 1, 1, 1)
[文档] def forward(self, inp):
return conv_transpose3d(
inp, self.weight, self.bias, self.stride, self.padding, self.dilation,
)