Source code for megengine.optimizer.clip_grad

# -*- coding: utf-8 -*-
# pylint: disable=redefined-builtin
from typing import Iterable, Union

from ..core._imperative_rt.core2 import pop_scope, push_scope
from ..functional import clip, concat, minimum, norm
from ..tensor import Tensor

__all__ = ["clip_grad_norm", "clip_grad_value"]


[docs]def clip_grad_norm( tensors: Union[Tensor, Iterable[Tensor]], max_norm: float, ord: float = 2.0, ): r"""Clips gradient norm of an iterable of parameters. The norm is computed over all gradients together, as if they were concatenated into a single vector. Gradients are modified in-place. Args: tensors: an iterable of Tensors or a single Tensor that will have gradients normalized. max_norm: max norm of the gradients. ord: type of the used p-norm. Can be ``'inf'`` for infinity norm. Default: 2.0 Returns: Return type: Tensor of an iterable of Tensors. Total norm of the parameter gradients (viewed as a single vector). Examples: >>> import megengine.optimizer as optim >>> net = Net() # doctest: +SKIP >>> original_norm = optim.clip_grad_norm(net.parameters(), max_norm=1.0, ord=2) # doctest: +SKIP """ push_scope("clip_grad_norm") if isinstance(tensors, Tensor): tensors = [tensors] tensors = [t for t in tensors if t.grad is not None] if len(tensors) == 0: pop_scope("clip_grad_norm") return Tensor(0.0) norm_ = [norm(t.grad.flatten(), ord=ord) for t in tensors] if len(norm_) > 1: norm_ = norm(concat(norm_), ord=ord) else: norm_ = norm_[0] scale = max_norm / (norm_ + 1e-6) scale = minimum(scale, 1) for tensor in tensors: tensor.grad._reset(tensor.grad * scale) pop_scope("clip_grad_norm") return norm_
[docs]def clip_grad_value( tensors: Union[Tensor, Iterable[Tensor]], lower: float, upper: float ): r"""Clips gradient of an iterable of parameters to a specified lower and upper. Gradients are modified in-place. The gradients are clipped in the range: .. math:: \left[\text{lower}, \text{upper}\right] Args: tensors: an iterable of Tensors or a single Tensor. lower: minimum allowed value of the gradients. upper: maximum allowed value of the gradients. Returns: None. Examples: >>> import megengine.optimizer as optim >>> net = Net() # doctest: +SKIP >>> optim.clip_grad_value(net.parameters(), lower=-2, upper=5) # doctest: +SKIP """ push_scope("clip_grad_value") if isinstance(tensors, Tensor): tensors = [tensors] for tensor in tensors: if tensor.grad is None: continue tensor.grad._reset(clip(tensor.grad, lower, upper)) pop_scope("clip_grad_value")