Source code for megengine.optimizer.adam

# -*- coding: utf-8 -*-
import os
from typing import Iterable, Tuple, Union

from ..functional.inplace import _inplace_add_
from ..tensor import Parameter, tensor
from .optimizer import Optimizer


[docs]class Adam(Optimizer): r"""Implements Adam algorithm proposed in `"Adam: A Method for Stochastic Optimization" <https://arxiv.org/abs/1412.6980>`_. Args: params (Union[Iterable[Parameter], dict]): iterable of parameters to optimize or dicts defining parameter groups. lr (float): learning rate. betas (Tuple[float, float]): coefficients used for computing running averages of gradient and its square. Default: (0.9, 0.999). eps (float): term added to the denominator to improve numerical stability. Default: 1e-8. weight_decay (float): weight decay (L2 penalty). Default: 0. Returns: An instance of the Adam optimizer. """ def __init__( self, params: Union[Iterable[Parameter], dict], lr: float, betas: Tuple[float, float] = (0.9, 0.999), eps: float = 1e-8, weight_decay: float = 0.0, ): if lr < 0.0: raise ValueError("Invalid learning rate: {}".format(lr)) if weight_decay < 0.0: raise ValueError("Invalid weight_decay value: {}".format(weight_decay)) if not 0.0 <= betas[0] < 1.0: raise ValueError("Invalid beta parameter at index 0: {}".format(betas[0])) if not 0.0 <= betas[1] < 1.0: raise ValueError("Invalid beta parameter at index 1: {}".format(betas[1])) defaults = dict(lr=lr, weight_decay=weight_decay, betas=betas, eps=eps) super().__init__(params, defaults) self._disable_type_convert = True def _create_state(self, param_group): for param in param_group["params"]: self._add_state(param, "exp_avg") self._add_state(param, "exp_avg_sq") self._add_state(param, "step", initializer=0.0) def _updates(self, param_group): lr = param_group["lr"] weight_decay = param_group["weight_decay"] eps = param_group["eps"] beta0, beta1 = param_group["betas"] def make_scalar(val): return tensor(val, dtype="float32") # since `conver_inputs` is disabled for param updates, # scalar should be explicitly tansforred to tensor _lr, _neg_lr = map(make_scalar, (lr, -lr)) _weight_decay = make_scalar(weight_decay) _eps = make_scalar(eps) _beta0, _beta1 = map(make_scalar, (beta0, beta1)) c1, c05 = map(make_scalar, (1.0, 0.5)) inplace_mode = int(os.getenv("MEGENGINE_INPLACE_UPDATE", "0")) if inplace_mode: # reduce device sync c1_sub_beta0, c1_sub_beta1 = map(make_scalar, (1 - beta0, 1 - beta1)) for param in param_group["params"]: if param.grad is None: continue grad = param.grad if weight_decay != 0.0: grad = grad + param * _weight_decay states = self._state[param] step, exp_avg, exp_avg_sq = ( states["step"], states["exp_avg"], states["exp_avg_sq"], ) if inplace_mode: _inplace_add_(step, c1, alpha=c1, beta=c1) _inplace_add_(exp_avg, grad, alpha=_beta0, beta=c1_sub_beta0) _inplace_add_( exp_avg_sq, grad * grad, alpha=_beta1, beta=c1_sub_beta1, ) delta = (exp_avg / (c1 - _beta0 ** step)) / ( (exp_avg_sq / (c1 - _beta1 ** step)) ** c05 + _eps ) _inplace_add_(param, delta, alpha=c1, beta=_neg_lr) continue # step = step + c1 step += c1 # exp_avg = _beta0 * exp_avg + grad * (c1 - _beta0) exp_avg *= _beta0 exp_avg += grad * (c1 - _beta0) # exp_avg_sq = _beta1 * exp_avg_sq + (c1 - _beta1) * (grad * grad) exp_avg_sq *= _beta1 exp_avg_sq += (c1 - _beta1) * (grad * grad) delta = (exp_avg / (c1 - _beta0 ** step)) / ( (exp_avg_sq / (c1 - _beta1 ** step)) ** c05 + _eps ) param -= _lr * delta