Source code for megengine.module.conv_bn

from typing import Tuple, Union

from ..functional import relu
from .batchnorm import BatchNorm2d
from .conv import Conv2d
from .module import Module


class _ConvBnActivation2d(Module):
    def __init__(
        self,
        in_channels: int,
        out_channels: int,
        kernel_size: Union[int, Tuple[int, int]],
        stride: Union[int, Tuple[int, int]] = 1,
        padding: Union[int, Tuple[int, int]] = 0,
        dilation: Union[int, Tuple[int, int]] = 1,
        groups: int = 1,
        bias: bool = True,
        conv_mode: str = "cross_correlation",
        compute_mode: str = "default",
        eps=1e-5,
        momentum=0.9,
        affine=True,
        track_running_stats=True,
        padding_mode: str = "zeros",
        **kwargs
    ):
        super().__init__(**kwargs)
        self.conv = Conv2d(
            in_channels,
            out_channels,
            kernel_size,
            stride,
            padding,
            dilation,
            groups,
            bias,
            conv_mode,
            compute_mode,
            padding_mode,
            **kwargs,
        )
        self.bn = BatchNorm2d(out_channels, eps, momentum, affine, track_running_stats)


[docs]class ConvBn2d(_ConvBnActivation2d): r"""A fused :class:`~.Module` including :class:`~.module.Conv2d` and :class:`~.module.BatchNorm2d`. Could be replaced with :class:`~.QATModule` version :class:`~.qat.ConvBn2d` using :func:`~.quantize.quantize_qat`. """ def forward(self, inp): return self.bn(self.conv(inp))
[docs]class ConvBnRelu2d(_ConvBnActivation2d): r"""A fused :class:`~.Module` including :class:`~.module.Conv2d`, :class:`~.module.BatchNorm2d` and :func:`~.relu`. Could be replaced with :class:`~.QATModule` version :class:`~.qat.ConvBnRelu2d` using :func:`~.quantize.quantize_qat`. """ def forward(self, inp): return relu(self.bn(self.conv(inp)))