Source code for megengine.functional.tensor

# -*- coding: utf-8 -*-
from functools import lru_cache
from typing import Iterable, List, Optional, Sequence, Tuple, Union

import numpy as np

from ..core._imperative_rt import CompNode
from ..core._imperative_rt.core2 import (
    Const,
    apply,
    broadcast_cpp,
    create_complex,
    dtype_promotion,
    expand_dims_cpp,
    get_imag,
    get_real,
    split_cpp,
    squeeze_cpp,
)
from ..core._wrap import as_device
from ..core.ops import builtin
from ..core.ops.builtin import Copy, Identity
from ..core.tensor.utils import astensor1d, convert_inputs, get_device, subgraph_fn
from ..device import get_default_device
from ..tensor import Tensor
from .elemwise import ceil, cos, sin

__all__ = [
    "arange",
    "broadcast_to",
    "concat",
    "cond_take",
    "non_zero",
    "copy",
    "cumsum",
    "diag",
    "expand_dims",
    "eye",
    "flatten",
    "full",
    "full_like",
    "gather",
    "imag",
    "linspace",
    "meshgrid",
    "ones",
    "ones_like",
    "polar",
    "repeat",
    "reshape",
    "roll",
    "scatter",
    "split",
    "squeeze",
    "stack",
    "swapaxes",
    "tile",
    "transpose",
    "complex",
    "real",
    "where",
    "zeros",
    "zeros_like",
]


# creation functions


[docs]def arange( start: Union[int, float] = 0, stop: Optional[Union[int, float]] = None, step: Union[int, float] = 1, *, dtype="float32", device=None, ) -> Tensor: r"""Returns evenly spaced values within the half-open interval ``[start, stop)`` as a one-dimensional tensor. Note: This function cannot guarantee that the interval does not include the stop value in those cases where step is not an integer and floating-point rounding errors affect the length of the output tensor. Args: start(Number): if ``stop`` is specified, the start of interval (inclusive); otherwise, the end of the interval (exclusive). If ``stop`` is not specified, the default starting value is ``0``. stop(Number): the end of the interval. step(Number): the distance between two adjacent elements ( ``out[i+1] - out[i]`` ). Must not be 0 ; may be negative, this results i an empty tensor if stop >= start . Keyword args: dtype(:attr:`.Tensor.dtype`, optional): output tensor data type. device(:attr:`.Tensor.device`, optional): device on which to place the created tensor. .. seealso:: :func:`~.functional.linspace` Returns: A one-dimensional tensor containing evenly spaced values. The length of the output tensor must be ``ceil((stop-start)/step)`` if ``stop - start`` and ``step`` have the same sign, and length 0 otherwise. Examples: >>> F.arange(5) Tensor([0. 1. 2. 3. 4.], device=xpux:0) >>> F.arange(1, 4) Tensor([1. 2. 3.], device=xpux:0) """ if stop is None: start, stop = 0, start if not isinstance(start, Tensor): start = Tensor(start, dtype="float32", device=device) if not isinstance(stop, Tensor): stop = Tensor(stop, dtype="float32", device=device) if not isinstance(step, Tensor): step = Tensor(step, dtype="float32", device=device) num = ceil((stop - start) / step) stop = start + step * (num - 1) result = linspace(start, stop, num, device=device) if np.dtype(dtype) != np.float32: return result.astype(dtype) return result
[docs]def linspace( start: Union[int, float], stop: Union[int, float], num: int, *, dtype="float32", device: Optional[CompNode] = None, ) -> Tensor: r"""Returns evenly spaced numbers over a specified interval. Returns ``num`` evenly spaced samples, calculated over the interval ``[start, stop]``. Args: start(Number): the start of the interval. stop(Number): the end of the interval. num(int): number of values to generate. Keyword args: dtype(:attr:`.Tensor.dtype`, optional): output tensor data type. If ``dtype`` is not given, the data type is inferred from ``start`` and ``stop``. device(:attr:`.Tensor.device`, optional): device on which to place the created tensor. Returns: a one-dimensional tensor containing evenly spaced values. .. seealso:: :func:`~.functional.arange` Examples: >>> F.linspace(1, 10, 10) Tensor([ 1. 2. 3. 4. 5. 6. 7. 8. 9. 10.], device=xpux:0) >>> F.linspace(2., 3., 5) Tensor([2. 2.25 2.5 2.75 3. ], device=xpux:0) """ for item in (start, stop, num): cur_device = getattr(item, "device", None) if device is None: device = cur_device else: if not (cur_device is None or device == cur_device): raise ("ambiguous device for linspace opr") if not isinstance(start, Tensor): start = Tensor(start, device=device) if not isinstance(stop, Tensor): stop = Tensor(stop, device=device) if not isinstance(num, Tensor): num = Tensor(num, device=device) op = builtin.Linspace(comp_node=device) (result,) = apply(op, start, stop, num) if np.dtype(dtype) != np.float32: return result.astype(dtype) return result
[docs]def eye(N: int, M: int = None, *, dtype="float32", device=None) -> Tensor: r"""Returns a two-dimensional tensor with ones on the diagonal and zeros elsewhere. Args: N: number of rows in the output tesnor. M: number of columns in the output tesnor. If ``None``, the default number of columns in the output tesnor is equal tos ``N``. Keyword args: dtype(:attr:`.Tensor.dtype`, optional): output tesnor data type. If ``None``, the output tesnor data type must be the default floating-point data type. device(:attr:`.Tensor.device`, optional): device on which to place the created tensor. .. seealso:: If you want to create a diagonal matrix, see :func:`~.functional.diag`. Returns: a tensor where all elements are equal to zero, except for the diagonal, whose values are equal to one. Examples: >>> F.eye(3) Tensor([[1. 0. 0.] [0. 1. 0.] [0. 0. 1.]], device=xpux:0) >>> F.eye(4, 6) Tensor([[1. 0. 0. 0. 0. 0.] [0. 1. 0. 0. 0. 0.] [0. 0. 1. 0. 0. 0.] [0. 0. 0. 1. 0. 0.]], device=xpux:0) """ if M is not None: if isinstance(N, Tensor) or isinstance(M, Tensor): shape = astensor1d((N, M)) else: shape = Tensor([N, M], dtype="int32", device=device) elif isinstance(N, Tensor): shape = N else: shape = Tensor(N, dtype="int32", device=device) op = builtin.Eye(k=0, dtype=dtype, comp_node=device) (result,) = apply(op, shape) return result
[docs]def diag(inp, k: int = 0) -> Tensor: r"""Extract a diagonal or construct a diagonal tensor. If ``inp`` is a 1D tensor, then returns a 2D tensor with the elements of ``inp`` as the diagonal. If ``inp`` is a 2D tensor, then returns a 1D tensor with the diagonal elements of ``inp``. Args: inp: input tensor. k: diagonal in consider. Use :math:`k=0` for the main diagonal, :math:`k>0` for diagonals above the main diagonal, and :math:`k<0` for diagonals below the main diagonal. .. seealso:: If you want to create a identity matrix, see :func:`~.functional.eye`. Returns: the extracted diagonal or constructed diagonal tensor. Examples: Input is a 1D tensor: >>> F.diag(Tensor([1, 2, 3])) Tensor([[1 0 0] [0 2 0] [0 0 3]], dtype=int32, device=xpux:0) >>> F.diag(Tensor([1, 2, 3]), k=1) Tensor([[0 1 0 0] [0 0 2 0] [0 0 0 3] [0 0 0 0]], dtype=int32, device=xpux:0) Input is a 2D tensor: >>> x = F.arange(9).reshape(3, 3) >>> x Tensor([[0. 1. 2.] [3. 4. 5.] [6. 7. 8.]], device=xpux:0) >>> F.diag(x) Tensor([0. 4. 8.], device=xpux:0) Get the k-th diagonal of a given matrix: >>> F.diag(x, k=1) Tensor([1. 5.], device=xpux:0) >>> F.diag(x, k=-1) Tensor([3. 7.], device=xpux:0) """ op = builtin.Diag(k=k) (result,) = apply(op, inp) return result
[docs]def full( shape: Union[int, Tuple[int, ...]], value: Union[bool, int, float], *, dtype=None, device=None, ) -> Tensor: r"""Returns a new tensor having a specified shape and filled with given value. Args: shape(int...): output tensor shape. value(Scalar): fill value. Keyword args: dtype(:attr:`.Tensor.dtype`, optional): output tensor data type. If ``dtype`` is ``None``, the output tensor data type must be inferred from ``value``. If the value is an ``int``, the output tensor data type must be the default integer data type. If the value is a ``float``, the output tensor data type must be the default floating-point data type. If the value is a ``bool``, the output tensor must have boolean data type. device(:attr:`.Tensor.device`, optional): device on which to place the created tensor. Returns: a tensor where every element is equal to ``value``. Examples: >>> F.full((2, 3), 6) Tensor([[6 6 6] [6 6 6]], dtype=int32, device=xpux:0) """ if isinstance(shape, int): shape = (shape,) if device is None: device = get_default_device() x = Const(value, dtype, device) if type(shape) in (list, tuple) and len(shape) == 0: return x return broadcast_to(x, shape)
[docs]def ones( shape: Union[int, Tuple[int, ...]], *, dtype="float32", device: Optional[CompNode] = None ) -> Tensor: r"""Returns a new tensor having a specified shape and filled with ones. Args: shape(int...): the shape of the output tensor. Keyword args: dtype(:attr:`.Tensor.dtype`, optional): output tensor data type. device(:attr:`.Tensor.device`, optional): device on which to place the created tensor. Returns: a tensor containing ones. Examples: >>> F.ones(5) Tensor([1. 1. 1. 1. 1.], device=xpux:0) >>> F.ones((5, ), dtype='int32') Tensor([1 1 1 1 1], dtype=int32, device=xpux:0) >>> F.ones((2, 2)) Tensor([[1. 1.] [1. 1.]], device=xpux:0) """ if isinstance(shape, int): shape = (shape,) if device == None: device = get_default_device() op = builtin.Fill(1, dtype) shape = astensor1d(shape, dtype="int32", device=device) (x,) = apply(op, shape) return x
[docs]def zeros( shape: Union[int, Tuple[int, ...]], *, dtype="float32", device: Optional[CompNode] = None ) -> Tensor: r"""Returns a new tensor having a specified shape and filled with zeros. Args: shape(int...): the shape of the output tensor. Keyword args: dtype(:attr:`.Tensor.dtype`, optional): output tensor data type. device(:attr:`.Tensor.device`, optional): device on which to place the created tensor. Returns: a tensor containing zeros. Examples: >>> F.zeros((2, 3)) Tensor([[0. 0. 0.] [0. 0. 0.]], device=xpux:0) """ if isinstance(shape, int): shape = (shape,) if device == None: device = get_default_device() op = builtin.Fill(0, dtype) shape = astensor1d(shape, dtype="int32", device=device) (x,) = apply(op, shape) return x
[docs]def zeros_like(inp: Tensor) -> Tensor: r"""Returns a tensor filled with zeros with the same shape and data type as input tensor. Args: inp(Tensor): input tensor from which to derive the output tensor shape. Return: a tensor having the same shape as input tensor and filled with zeros. Examples: >>> x = F.arange(6, dtype='int32').reshape(2, 3) >>> F.zeros_like(x) Tensor([[0 0 0] [0 0 0]], dtype=int32, device=xpux:0) """ return full_like(inp, 0.0)
[docs]def ones_like(inp: Tensor) -> Tensor: r"""Returns a tensor filled with ones with the same shape and data type as input tensor. Args: inp(Tensor): input tensor from which to derive the output tensor shape. Return: a tensor having the same shape as input tensor and filled with ones. Examples: >>> x = F.arange(6, dtype='int32').reshape(2, 3) >>> F.ones_like(x) Tensor([[1 1 1] [1 1 1]], dtype=int32, device=xpux:0) """ return full_like(inp, 1.0)
[docs]def polar(abs: Tensor, angle: Tensor) -> Tensor: r"""Constructs a complex tensor whose elements are Cartesian coordinates corresponding to the polar coordinates with absolute value abs and angle angle. Args: abs(Tensor): the absolute value the complex tensor. Must be float. angle(Tensor): the angle of the complex tensor. Must be float. Returns: the complex tensor Examples: >>> abs = Tensor([1, 2], dtype=np.float32) >>> angle = Tensor([np.pi / 2, 5 * np.pi / 4], dtype=np.float32) >>> z = F.polar(abs, angle) >>> z Tensor([-4.3711e-08+1.j -1.4142e+00-1.4142j], dtype=complex64, device=xpux:0) """ return create_complex(abs * cos(angle), abs * sin(angle))
[docs]def complex(real: Tensor, imag: Tensor) -> Tensor: r"""Constructs a complex tensor with its real part equal to real and its imaginary part equal to imag. Args: real(Tensor): the real part of the complex tensor. Must be float. imag(Tensor): the imaginary part of the complex tensor. Must be float. Returns: the complex tensor Examples: >>> real = Tensor([1, 2], dtype=np.float32) >>> imag = Tensor([3, 4], dtype=np.float32) >>> z = F.complex(real, imag) >>> z Tensor([1.+3.j 2.+4.j], dtype=complex64, device=xpux:0) >>> z.dtype dtype('complex64') """ if not isinstance(real, Tensor): real = Tensor(real) if not isinstance(imag, Tensor): imag = Tensor(imag) return create_complex(real, imag)
[docs]def real(complex: Tensor) -> Tensor: r"""Returns a new tensor containing real values of the complex tensor. Args: complex(Tensor) the complex tensor Returns: the real part of the complex tensor Examples: >>> x=Tensor([0.3100+0.3553j, -0.5445-0.7896j, -1.6492-0.0633j, -0.0638-0.8119j], dtype=np.complex64) >>> F.real(x) Tensor([[ 0.31 ] [-0.5445] [-1.6492] [-0.0638]], device=xpux:0) """ return get_real(complex)
[docs]def imag(complex: Tensor) -> Tensor: r"""Returns a new tensor containing imaginary values of the complex tensor. Args: complex(Tensor) the complex tensor Returns: the imaginary part of the complex tensor Examples: >>> x=Tensor([0.3100+0.3553j, -0.5445-0.7896j, -1.6492-0.0633j, -0.0638-0.8119j], dtype=np.complex64) >>> F.imag(x) Tensor([[ 0.3553] [-0.7896] [-0.0633] [-0.8119]], device=xpux:0) """ return get_imag(complex)
[docs]def full_like(inp: Tensor, value: Union[int, float]) -> Tensor: r"""Returns a tensor filled with given value with the same shape as input tensor. Args: inp(Tensor): input tensor from which to derive the output tensor shape. value(Scalar): fill value. Return: a tensor having the same shape as input tensor and where every element is equal to fill value. Examples: >>> x = F.arange(6, dtype='int32').reshape(2, 3) >>> F.full_like(x, 2) Tensor([[2 2 2] [2 2 2]], dtype=int32, device=xpux:0) """ op = builtin.FillLike(value=value) (rst,) = apply(op, inp) # rst.format = inp.format # see jira:MGE-4505 return rst
# manipulation functions
[docs]def broadcast_to(inp: Tensor, shape: Union[int, Iterable[int]]) -> Tensor: r"""Broadcasts a tensor to given shape. Args: inp: input tensor. shape: target shape. Returns: output tensor. Examples: >>> import numpy as np >>> data = Tensor(np.arange(0, 3, dtype=np.float32).reshape(3)) >>> out = F.broadcast_to(data, (2, 3)) >>> out.numpy() array([[0., 1., 2.], [0., 1., 2.]], dtype=float32) """ return broadcast_cpp(inp, shape)
[docs]def concat(inps: Iterable[Tensor], axis: int = 0, device=None) -> Tensor: r"""Concat some tensors Args: inps: input tensors to concat. axis: over which dimension the tensors are concatenated. Default: 0 device: which device output will be. Default: None Returns: output tensor. Examples: >>> import numpy as np >>> data1 = Tensor(np.arange(0, 6, dtype=np.float32).reshape((2, 3))) >>> data2 = Tensor(np.arange(6, 12, dtype=np.float32).reshape((2, 3))) >>> out = F.concat([data1, data2]) >>> out.numpy() array([[ 0., 1., 2.], [ 3., 4., 5.], [ 6., 7., 8.], [ 9., 10., 11.]], dtype=float32) """ if len(inps) == 1: # if we return inps[0] directly, then the grad manager capture nothing return copy(inps[0], device) if device is None: device = get_device(inps) device = as_device(device) (result,) = apply(builtin.Concat(axis=axis, comp_node=device.to_c()), *inps) return result
[docs]def stack(inps, axis=0, device=None): r"""Concats a sequence of tensors along a new axis. The input tensors must have the same shape. Args: inps: input tensors. axis: which axis will be concatenated. device: the device output will be. Default: None Returns: output concatenated tensor. Examples: >>> import numpy as np >>> x1 = Tensor(np.arange(0, 3, dtype=np.float32).reshape((3))) >>> x2 = Tensor(np.arange(6, 9, dtype=np.float32).reshape((3))) >>> out = F.stack([x1, x2], axis=0) >>> out.numpy() array([[0., 1., 2.], [6., 7., 8.]], dtype=float32) """ if len(inps) == 1: ret = expand_dims(inps[0], axis=axis) if device is None: return ret else: return copy(ret, device) if device is None: device = get_device(inps) device = as_device(device) (result,) = apply(builtin.Stack(axis=axis, comp_node=device.to_c()), *inps) return result
[docs]def split(inp, nsplits_or_sections, axis=0): r"""Splits the input tensor into several smaller tensors. When nsplits_or_sections is int, the last tensor may be smaller than others. Args: inp: input tensor. nsplits_or_sections: number of sub tensors or sections information list. axis: which axis will be splited. Returns: output tensor list. Examples: >>> import os >>> import numpy as np >>> x = Tensor(np.random.random((10, 20)), dtype=np.float32) >>> y = F.split(x, 3) >>> z = F.split(x, [6, 17], axis=1) >>> print([i.numpy().shape for i in y]) [(4, 20), (3, 20), (3, 20)] >>> print([i.numpy().shape for i in z]) [(10, 6), (10, 11), (10, 3)] """ return split_cpp(inp, nsplits_or_sections, axis)
def _get_idx(index, axis): index_dims = len(index.shape) idx = [] if axis < 0: axis += index_dims for i in range(index_dims): if i != axis: shape = [1] * index_dims shape[i] = index.shape[i] arange = linspace( 0, index.shape[i] - 1, index.shape[i], device=index.device, ) arange = ( broadcast_to(arange.reshape(*shape), index.shape) .reshape(-1) .astype(np.int32) ) idx.append(arange) else: idx.append(index.reshape(-1)) return tuple(idx)
[docs]def gather(inp: Tensor, axis: int, index: Tensor) -> Tensor: # TODO: rewrite doc r""" Gathers data from input tensor on axis using index. For a 3-D tensor, the output is specified by: .. code-block:: out[i][j][k] = inp[index[i][j][k]][j][k] # if axis == 0 out[i][j][k] = inp[i][index[i][j][k]][k] # if axis == 1 out[i][j][k] = inp[i][j][index[i][j][k]] # if axis == 2 if input tensor is a n-dimensional tensor with size :math:`(x_0,x_1,...,x_{i-1},x_i,x_{i+1},...,x_{n-1})` and axis=i, then index must be a n-dimensional tensor with size :math:`(x_0,x_1,...,x_{i-1},y,x_{i+1},...,x_{n-1})` where :math:`y\ge 1` and output will have the same size as index. Args: inp: input tensor. axis: along which axis to index. index: indices of elements to gather. Return: output tensor. Examples: >>> inp = Tensor([ ... [1,2], [3,4], [5,6], ... ]) >>> index = Tensor([[0,2], [1,0]]) >>> F.gather(inp, 0, index) Tensor([[1 6] [3 2]], dtype=int32, device=xpux:0) """ input_shape = inp.shape index_shape = index.shape input_dims = len(input_shape) index_dims = len(index_shape) if input_dims != index_dims: raise ValueError( "The index tensor must have same dimensions as input tensor, " "But the input dims:{}, the index dims:{}".format(input_dims, index_dims) ) idx = _get_idx(index, axis) return inp[idx].reshape(index.shape) # pylint: disable=no-member
[docs]def scatter(inp: Tensor, axis: int, index: Tensor, source: Tensor) -> Tensor: # TODO: rewrite doc r""" Writes all values from the tensor source into input tensor at the indices specified in the index tensor. For each value in source, its output index is specified by its index in source for ``axis != dimension`` and by the corresponding value in index for ``axis = dimension``. For a 3-D tensor, input tensor is updated as: .. code-block:: inp[index[i][j][k]][j][k] = source[i][j][k] # if axis == 0 inp[i][index[i][j][k]][k] = source[i][j][k] # if axis == 1 inp[i][j][index[i][j][k]] = source[i][j][k] # if axis == 2 ``inp``, ``index`` and ``source`` should have same number of dimensions. It is also required that ``source.shape(d) <= inp.shape(d)`` and ``index.shape(d) == source.shape(d)`` for all dimensions ``d``. Moreover, the values of index must be between ``0`` and ``inp.shape(axis) - 1`` inclusive. Note: Please notice that, due to performance issues, the result is uncertain on the GPU device if scattering different positions from source to the same destination position regard to index tensor. Check the following examples, the oup[0][2] is maybe from source[0][2] which value is 0.2256 or source[1][2] which value is 0.5339 if set the index[1][2] from 1 to 0. Args: inp: inp tensor which to be scattered. axis: axis along which to index. index: indices of elements to scatter. source: source element(s) to scatter. Return: output tensor. Examples: >>> import numpy as np >>> inp = Tensor(np.zeros(shape=(3,5),dtype=np.float32)) >>> source = Tensor([[0.9935,0.9465,0.2256,0.8926,0.4396],[0.7723,0.0718,0.5939,0.357,0.4576]]) >>> index = Tensor([[0,2,0,2,1],[2,0,1,1,2]]) >>> oup = F.scatter(inp, 0, index, source) >>> oup.numpy() array([[0.9935, 0.0718, 0.2256, 0. , 0. ], [0. , 0. , 0.5939, 0.357 , 0.4396], [0.7723, 0.9465, 0. , 0.8926, 0.4576]], dtype=float32) """ input_shape = inp.shape index_shape = index.shape source_shape = source.shape input_dims = len(input_shape) index_dims = len(index_shape) source_dims = len(source_shape) if input_dims != index_dims or input_dims != source_dims: raise ValueError("The input, source and index tensor must have same dimensions") for i in range(source_dims): if source_shape[i] > input_shape[i]: raise ValueError( "The each shape size for source {} must be less than or equal to input {} ".format( source_shape, input_shape ) ) for i in range(index_dims): if index_shape[i] != source_shape[i]: raise ValueError( "The each shape size for index {} must be equal to source {} ".format( index_shape, source_shape ) ) for i in range(index_dims): if i != axis and index_shape[i] > input_shape[i]: raise ValueError( "The index {} must be less than or equal to input {} size apart from axis {}".format( index_shape, input_shape, axis ) ) idx = _get_idx(index, axis) inp[idx] = source.flatten() return inp
[docs]def where(mask: Tensor, x: Tensor = None, y: Tensor = None) -> Tensor: r"""Selects elements either from Tensor x or Tensor y, according to mask. .. math:: \textrm{out}_i = x_i \textrm{ if } \textrm{mask}_i \textrm{ is True else } y_i Args: mask: a mask used for choosing ``x`` or ``y``. x: first choice. y: second choice. Returns: output tensor. Examples: >>> import numpy as np >>> mask = Tensor(np.array([[True, False], [False, True]], dtype=np.bool)) >>> x = Tensor(np.array([[1, np.inf], [np.nan, 4]], ... dtype=np.float32)) >>> y = Tensor(np.array([[5, 6], [7, 8]], dtype=np.float32)) >>> out = F.where(mask, x, y) >>> out.numpy() array([[1., 6.], [7., 4.]], dtype=float32) """ if x is None and y is None: return non_zero(mask, as_tuple=True) if not isinstance(x, Tensor): raise TypeError("input x must be a tensor") if not isinstance(y, Tensor): raise TypeError("input y must be a tensor") if not isinstance(mask, Tensor): raise TypeError("mask must be a tensor") if mask.dtype != np.bool_: raise ValueError("mask must be bool") if x.device != mask.device: raise ValueError("ambiguous device: {} vs {}".format(x.device, mask.device)) where = builtin.Where() return apply(where, mask, x, y)[0]
[docs]def cond_take(mask: Tensor, x: Tensor) -> Tensor: r"""Takes elements from data if specific condition is satisfied on mask. This operator has two outputs: the first is the elements taken, and the second is the indices corresponding to those elements; they are both 1-dimensional. High-dimension input would first be flattened. Args: mask: condition param; must be the same shape with data. x: input tensor from which to take elements. Examples: >>> import numpy as np >>> mask = Tensor(np.array([[True, False], [False, True]], dtype=np.bool_)) >>> x = Tensor(np.array([[1, np.inf], [np.nan, 4]], ... dtype=np.float32)) >>> v, index = F.cond_take(mask, x) >>> print(v.numpy(), index.numpy()) [1. 4.] [0 3] """ if not isinstance(x, Tensor): raise TypeError("input must be a tensor") if not isinstance(mask, Tensor): raise TypeError("mask must be a tensor") if mask.dtype != np.bool_: raise ValueError("mask must be bool") if x.device != mask.device: raise ValueError("ambiguous device: {} vs {}".format(x.device, mask.device)) op = builtin.CondTake() v, index = apply(op, x, mask) return v, index
[docs]def transpose(inp: Tensor, pattern: Iterable[int]) -> Tensor: r"""Swaps shapes and strides according to given pattern. Args: inp: input tensor. pattern: a list of integers including 0, 1, ... , ``ndim``-1, and any number of ``'x'`` char in dimensions where this tensor should be broadcasted. For examples: * (``'x'``) -> make a 0d (scalar) into a 1d vector * (0, 1) -> identity for 2d vectors * (1, 0) -> inverts the first and second dimensions * (``'x'``, 0) -> make a row out of a 1d vector (N to 1xN) * (0, ``'x'``) -> make a column out of a 1d vector (N to Nx1) * (2, 0, 1) -> AxBxC to CxAxB * (0, ``'x'``, 1) -> AxB to Ax1xB * (1, ``'x'``, 0) -> AxB to Bx1xA * (1,) -> this removes dimensions 0. It must be a broadcastable dimension (1xA to A) Returns: output tensor. Examples: >>> import numpy as np >>> x = Tensor(np.array([[1, 1], [0, 0]], dtype=np.int32)) >>> F.transpose(x, (1, 0)) Tensor([[1 0] [1 0]], dtype=int32, device=xpux:0) """ return inp.transpose(pattern)
[docs]def non_zero(condition: Tensor, as_tuple=False): r"""When as_tuple is False (default): Returns a tensor including the indices of all non-zero elements of Tensor condition. Every row in the result including the indices of a non-zero element in input. The result is sorted in lexicography order, with the last index changing the fastest (C-style). When as_tuple is True: Returns a tuple of 1-D tensors, one for each dimension in input, each containing the indices (in that dimension) of all non-zero elements of condition. Args: condition(Tensor) - the input tensor Returns: one tuple of 1-D tensors or one tensor Examples: >>> import numpy as np >>> condition = Tensor(np.array([1,1,0,1])) >>> index = F.non_zero(condition,as_tuple=True) >>> print(index) (Tensor([0 1 3], dtype=int32, device=xpux:0),) """ if not isinstance(condition, Tensor): raise TypeError("input must be a tensor") op = builtin.NonZero() (index,) = apply(op, condition) ret = None if as_tuple == True: arr = [] for index_ele in range(0, condition.ndim): arr.append(index[index_ele, :]) ret = tuple(arr) else: ret = transpose(index, (1, 0)) return ret
[docs]def swapaxes(inp: Tensor, axis1: int, axis2: int) -> Tensor: r"""Interchange two axes of a tensor. Args: inp: input tensor to swapaxes. axis1: first axis. axis2: second axis. Returns: a tensor after swapping the two axes of 'inp'. Examples: >>> x = Tensor(np.array([[[0,1],[2,3]],[[4,5],[6,7]]], dtype=np.int32)) >>> F.swapaxes(x, 0, 2) Tensor([[[0 4] [2 6]] [[1 5] [3 7]]], dtype=int32, device=xpux:0) """ pattern = list(range(inp.ndim)) tempAxis = pattern[axis1] pattern[axis1] = pattern[axis2] pattern[axis2] = tempAxis return inp.transpose(pattern)
[docs]def reshape(inp: Tensor, target_shape: Iterable[int]) -> Tensor: r"""Reshapes a tensor without changing its data. Args: inp: input tensor to reshape. target_shape: target shape compatible with the original shape. One shape dimension is allowed to be `-1` . When a shape dimension is `-1` , the corresponding output tensor shape dimension must be inferred from the length of the tensor and the remaining dimensions. Returns: an output tensor having the same data type, elements, and underlying element order as `inp` . Examples: >>> x = F.arange(12) >>> x Tensor([ 0. 1. 2. 3. 4. 5. 6. 7. 8. 9. 10. 11.], device=xpux:0) >>> F.reshape(x, (3, 4)) Tensor([[ 0. 1. 2. 3.] [ 4. 5. 6. 7.] [ 8. 9. 10. 11.]], device=xpux:0) >>> F.reshape(x, (2, -1)) Tensor([[ 0. 1. 2. 3. 4. 5.] [ 6. 7. 8. 9. 10. 11.]], device=xpux:0) """ return inp.reshape(target_shape)
[docs]def flatten(inp: Tensor, start_axis: int = 0, end_axis: int = -1) -> Tensor: r"""Reshapes the tensor by flattening the sub-tensor from dimension ``start_axis`` to dimension ``end_axis``. Args: inp: input tensor. start_axis: start dimension that the sub-tensor to be flattened. Default: 0 end_axis: end dimension that the sub-tensor to be flattened. Default: -1 Returns: output tensor. Examples: >>> import numpy as np >>> inp_shape = (2, 2, 3, 3) >>> x = Tensor( ... np.arange(36, dtype=np.int32).reshape(inp_shape), ... ) >>> out = F.flatten(x, 2) >>> x.numpy().shape (2, 2, 3, 3) >>> out.numpy().shape (2, 2, 9) """ return inp.flatten(start_axis, end_axis)
[docs]def expand_dims(inp: Tensor, axis: Union[int, Sequence[int]]) -> Tensor: r"""Adds dimension before given axis. Args: inp: input tensor. axis: place of new axes. Returns: output tensor. Examples: >>> import numpy as np >>> x = Tensor([1, 2]) >>> out = F.expand_dims(x, 0) >>> out.numpy().shape (1, 2) """ return expand_dims_cpp(inp, axis)
[docs]def squeeze(inp: Tensor, axis: Optional[Union[int, Sequence[int]]] = None) -> Tensor: r"""Removes dimension of shape 1. Args: inp: input tensor. axis: place of axis to be removed. Returns: output tensor. Examples: >>> import numpy as np >>> x = Tensor(np.array([1, 2], dtype=np.int32).reshape(1, 1, 2, 1)) >>> out = F.squeeze(x, 3) >>> out.numpy().shape (1, 1, 2) """ return squeeze_cpp(inp, axis)
[docs]def repeat(inp: Tensor, repeats: int, axis: Optional[int] = None): r"""Repeat elements of an array. Args: inp: input tensor. repeats: the number of repetitions for each element. axis: the axis along which to repeat values. By default, use the flattened input array, and return a flat output array. Returns: output tensor. Examples: >>> import numpy as np >>> x = Tensor([[1, 2], [3, 4]], np.int32) >>> F.repeat(x, 2, axis=0) Tensor([[1 2] [1 2] [3 4] [3 4]], dtype=int32, device=xpux:0) """ if axis is None: inp = inp.reshape(-1) # flatten axis = 0 shape = astensor1d(inp.shape, inp, dtype="int32", device=inp.device) # assume inp.ndim is not changed during trace max_axis = len(shape) - 1 assert axis >= 0 and axis <= max_axis assert repeats >= 1 base_shape, bcast_shape, target_shape = [], [], [] if axis != 0: target_shape.append(shape[:axis]) base_shape.extend([shape[: axis + 1], [1,]]) bcast_shape.extend([shape[: axis + 1], [repeats,]]) target_shape.extend( [shape[axis] * repeats,] ) if axis + 1 <= max_axis: base_shape.append(shape[axis + 1 :]) bcast_shape.append(shape[axis + 1 :]) target_shape.append(shape[axis + 1 :]) base_shape = astensor1d(base_shape) bcast_shape = astensor1d(bcast_shape) target_shape = astensor1d(target_shape) out = broadcast_to(inp.reshape(base_shape), bcast_shape).reshape(target_shape) return out
def _tile_one_dim(inp, rep, axis): shape = astensor1d(inp.shape, inp, dtype="int32", device=inp.device) # assume inp.ndim is not changed during trace max_axis = len(shape) - 1 base_shape, bcast_shape, target_shape = [], [], [] if axis != 0: base_shape.append(shape[:axis]) bcast_shape.append(shape[:axis]) target_shape.append(shape[:axis]) base_shape.extend([[1,], shape[axis:]]) bcast_shape.extend([rep, shape[axis:]]) target_shape.append(shape[axis] * rep) if axis + 1 <= max_axis: target_shape.append(shape[axis + 1 :]) base_shape = astensor1d(base_shape) bcast_shape = astensor1d(bcast_shape) target_shape = astensor1d(target_shape) out = broadcast_to(inp.reshape(base_shape), bcast_shape).reshape(target_shape) return out
[docs]def tile(inp: Tensor, reps: Iterable[int]): r"""Construct an array by repeating ``inp`` the number of times given by ``reps``. If reps has length d, the result will have dimension of ``max(d, inp.ndim)``. It is required that ``d >= inp.dim``. If ``inp.ndim < d``, ``inp`` is promoted to be ``d``-dimensional by prepending new axis. Args: inp: input tensor. reps: The number of repetitions of inp along each axis. Returns: output tensor. Examples: >>> import numpy as np >>> x = Tensor([[1, 2], [3, 4]], np.int32) >>> F.tile(x, (2,1)) Tensor([[1 2] [3 4] [1 2] [3 4]], dtype=int32, device=xpux:0) """ shape = astensor1d(inp.shape, inp, dtype="int32", device=inp.device) reps = astensor1d(reps, inp, dtype="int32", device=inp.device) l_shape = len(shape) l_reps = len(reps) assert ( l_reps >= l_shape ), "Number of dimensions of tiled dims can not be smaller than number of dimensions of tensor" for i in range(l_shape): rep = reps[i + (l_reps - l_shape)] inp = _tile_one_dim(inp, rep, i) if l_reps > l_shape: extra = reps[:-l_shape] extra_ones = ones_like(extra) base_shape = concat([extra_ones, shape]) bcast_shape = concat([extra, shape]) target_shape = concat([extra, shape]) inp = broadcast_to(inp.reshape(base_shape), bcast_shape).reshape(target_shape) return inp
[docs]def copy(inp, device=None): r"""Copies tensor to another device. Args: inp: input tensor. device: destination device. Examples: >>> import numpy as np >>> x = Tensor([1, 2, 3], np.int32) >>> F.copy(x, 'cpu1') Tensor([1 2 3], dtype=int32, device=cpu1:0) >>> F.copy(x, 'xpu0') Tensor([1 2 3], dtype=int32, device=xpu0:0) """ if device is None: return apply(Identity(), inp)[0] return apply(Copy(comp_node=as_device(device).to_c()), inp)[0]
[docs]def roll( inp: Tensor, shift: Union[int, Iterable[int]], axis: Optional[Union[int, Iterable[int]]] = None, ): r"""Roll the tensor along the given axis(or axes). Elements that are shifted beyond the last position are re-introduced at the first position. Args: inp: input tensor. shift: the number of places by which the elements of the tensor are shifted. If shift is a tuple, axis must be a tuple of the same size, and each axis will be rolled by the corresponding shift value. axis: axis along which to roll. If axis is not specified, the tensor will be flattened before rolling and then restored to the original shape. Duplicate axes is allowed if it is a tuple. Default: None. Examples: >>> import numpy as np >>> x = Tensor([[1,2],[3,4],[5,6]], np.int32) >>> F.roll(x, 1, 0) Tensor([[5 6] [1 2] [3 4]], dtype=int32, device=xpux:0) """ shp_bak = None if axis is None: shp_bak = inp.shape inp = inp.flatten() axis = 0 shp = inp.shape dim = len(shp) if isinstance(shift, int): assert isinstance(axis, int) shift, axis = [shift,], [axis,] assert len(shift) == len(axis) out = inp for i in range(len(shift)): axis_ = axis[i] shift_ = shift[i] axis_normalized_ = axis_ + dim if axis_ < 0 else axis_ assert ( dim > axis_normalized_ >= 0 ), "axis out of range (expected to be in range of [{}, {}], but got {})".format( -dim, dim - 1, axis_ ) if shift_ == 0: continue size = shp[axis_normalized_] shift_normalized_ = 0 if size == 0 else shift_ % size if shift_normalized_ > 0: a, b = split(out, [size - shift_normalized_,], axis=axis_normalized_) else: a, b = split(out, [-shift_normalized_,], axis=axis_normalized_) out = concat((b, a), axis=axis_normalized_) if shp_bak is not None: out = out.reshape(shp_bak) return out
# TODO: Should be moved to math - statistical functions
[docs]def cumsum(inp: Tensor, axis: int): r"""Calculates the cumulative sum of tensor elements over a given axis. Args: inp: input tensor. Should have a numeric data type. axis: axis along which cumulative sums must be computed. Returns: a tensor containing the cumulative sums. Examples: If :math:`x_i` is ``NaN``, the cumulative sums is ``NaN`` (i.e., ``NaN`` values propagate). Examples: >>> x = Tensor([[1, 2, 3], [4, 5, 6]]) >>> F.cumsum(x, axis = 0) Tensor([[1 2 3] [5 7 9]], dtype=int32, device=xpux:0) >>> F.cumsum(x, axis = 1) Tensor([[ 1 3 6] [ 4 9 15]], dtype=int32, device=xpux:0) """ op = builtin.Cumsum(axis=axis, exclusive=False, reverse=False) return apply(op, inp)[0]
def meshgrid(*inputs: Tensor, indexing: str = "xy") -> List[Tensor]: r"""Returns coordinate matrices from coordinate vectors. Args: inputs: an arbitrary number of one-dimensional tensors representing grid coordinates. Each input should have the same numeric data type. indexing: Cartesian ``'xy'`` or matrix ``'ij'`` indexing of output. If provided zero or one one-dimensional vector(s) (i.e., the zero- and one-dimensional cases, respectively), the indexing keyword has no effect and should be ignored. Returns: out: list of N tensors, where N is the number of provided one-dimensional input tensors. Each returned tensor must have rank N. For N one-dimensional tensors having lengths ``Ni = len(xi)``, * if matrix indexing ``ij``, then each returned tensor must have the shape ``(N1, N2, N3, ..., Nn)``. * if Cartesian indexing ``xy``, then each returned tensor must have shape ``(N2, N1, N3, ..., Nn)``. Accordingly, for the two-dimensional case with input one-dimensional tensors of length ``M`` and ``N``, if matrix indexing ``ij``, then each returned tensor must have shape ``(M, N)``, and, if Cartesian indexing ``xy``, then each returned tensor must have shape ``(N, M)``. Similarly, for the three-dimensional case with input one-dimensional tensor of length ``M``, ``N``, and ``P``, if matrix indexing ``ij``, then each returned tensor must have shape ``(M, N, P)``, and, if Cartesian indexing ``xy``, then each returned tensor must have shape ``(N, M, P)``. Each returned tensor should have the same data type as the input tensors. Examples: >>> nx, ny = (3, 2) >>> x = F.linspace(0, 1, nx) >>> y = F.linspace(0, 1, ny) >>> xv, yv = F.meshgrid(x, y) >>> xv Tensor([[0. 0.5 1. ] [0. 0.5 1. ]], device=xpux:0) >>> yv Tensor([[0. 0. 0.] [1. 1. 1.]], device=xpux:0) """ op = builtin.MeshGrid(indexing) return apply(op, *inputs)