# -*- coding: utf-8 -*-
# Copyright (c) 2016- Facebook, Inc (Adam Paszke)
# Copyright (c) 2014- Facebook, Inc (Soumith Chintala)
# Copyright (c) 2011-2014 Idiap Research Institute (Ronan Collobert)
# Copyright (c) 2012-2014 Deepmind Technologies (Koray Kavukcuoglu)
# Copyright (c) 2011-2012 NEC Laboratories America (Koray Kavukcuoglu)
# Copyright (c) 2011-2013 NYU (Clement Farabet)
# Copyright (c) 2006-2010 NEC Laboratories America (Ronan Collobert, Leon Bottou, Iain Melvin, Jason Weston)
# Copyright (c) 2006 Idiap Research Institute (Samy Bengio)
# Copyright (c) 2001-2004 Idiap Research Institute (Ronan Collobert, Samy Bengio, Johnny Mariethoz)
# ---------------------------------------------------------------------
#
# This file has been modified by Megvii ("Megvii Modifications").
# All Megvii Modifications are Copyright (C) 2014-2021 Megvii Inc. All rights reserved.
# ----------------------------------------------------------------------
import collections.abc
import re
import numpy as np
np_str_obj_array_pattern = re.compile(r"[aO]")
default_collate_err_msg_format = (
"default_collator: inputs must contain numpy arrays, numbers, "
"Unicode strings, bytes, dicts or lists; found {}"
)
[docs]class Collator:
r"""Used for merging a list of samples to form a mini-batch of Tensor(s). Used when using batched loading from a dataset.
Modified from https://github.com/pytorch/pytorch/blob/master/torch/utils/data/_utils/collate.py
"""
def apply(self, inputs):
elem = inputs[0]
elem_type = type(elem)
if (
elem_type.__module__ == "numpy"
and elem_type.__name__ != "str_"
and elem_type.__name__ != "string_"
):
elem = inputs[0]
if elem_type.__name__ == "ndarray":
# array of string classes and object
if np_str_obj_array_pattern.search(elem.dtype.str) is not None:
raise TypeError(default_collate_err_msg_format.format(elem.dtype))
return np.ascontiguousarray(np.stack(inputs))
elif elem.shape == (): # scalars
return np.array(inputs)
elif isinstance(elem, float):
return np.array(inputs, dtype=np.float64)
elif isinstance(elem, int):
return np.array(inputs)
elif isinstance(elem, (str, bytes)):
return inputs
elif isinstance(elem, collections.abc.Mapping):
return {key: self.apply([d[key] for d in inputs]) for key in elem}
elif isinstance(elem, tuple) and hasattr(elem, "_fields"): # namedtuple
return elem_type(*(self.apply(samples) for samples in zip(*inputs)))
elif isinstance(elem, collections.abc.Sequence):
transposed = zip(*inputs)
return [self.apply(samples) for samples in transposed]
raise TypeError(default_collate_err_msg_format.format(elem_type))