# MegEngine is Licensed under the Apache License, Version 2.0 (the "License")
#
# Copyright (c) 2014-2021 Megvii Inc. All rights reserved.
#
# Unless required by applicable law or agreed to in writing,
# software distributed under the License is distributed on an
# "AS IS" BASIS, WITHOUT ARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
from ...functional import ones, relu, sqrt, sum, zeros
from .. import conv_bn as Float
from .module import QATModule
class _ConvBnActivation2d(Float._ConvBnActivation2d, QATModule):
def get_batch_mean_var(self, inp):
def _sum_channel(inp, axis=0, keepdims=True):
if isinstance(axis, int):
out = sum(inp, axis=axis, keepdims=keepdims)
elif isinstance(axis, tuple):
for idx, elem in enumerate(axis):
out = sum(inp if idx == 0 else out, axis=elem, keepdims=keepdims)
return out
sum1 = _sum_channel(inp, (0, 2, 3))
sum2 = _sum_channel(inp ** 2, (0, 2, 3))
reduce_size = inp.size / inp.shape[1]
batch_mean = sum1 / reduce_size
batch_var = (sum2 - sum1 ** 2 / reduce_size) / reduce_size
return batch_mean, batch_var
def fold_weight_bias(self, bn_mean, bn_var):
# get fold bn conv param
# bn_istd = 1 / bn_std
# w_fold = gamma / bn_std * W
# b_fold = gamma * (b - bn_mean) / bn_std + beta
gamma = self.bn.weight
if gamma is None:
gamma = ones((self.bn.num_features), dtype="float32")
gamma = gamma.reshape(1, -1, 1, 1)
beta = self.bn.bias
if beta is None:
beta = zeros((self.bn.num_features), dtype="float32")
beta = beta.reshape(1, -1, 1, 1)
if bn_mean is None:
bn_mean = zeros((1, self.bn.num_features, 1, 1), dtype="float32")
if bn_var is None:
bn_var = ones((1, self.bn.num_features, 1, 1), dtype="float32")
conv_bias = self.conv.bias
if conv_bias is None:
conv_bias = zeros(self.conv._infer_bias_shape(), dtype="float32")
bn_istd = 1.0 / sqrt(bn_var + self.bn.eps)
# bn_istd = 1 / bn_std
# w_fold = gamma / bn_std * W
scale_factor = gamma * bn_istd
if self.conv.groups == 1:
w_fold = self.conv.weight * scale_factor.reshape(-1, 1, 1, 1)
else:
w_fold = self.conv.weight * scale_factor.reshape(
self.conv.groups, -1, 1, 1, 1
)
w_fold = self.apply_quant_weight(w_fold)
# b_fold = gamma * (b - bn_mean) / bn_std + beta
b_fold = beta + gamma * (conv_bias - bn_mean) * bn_istd
return w_fold, b_fold
def update_running_mean_and_running_var(
self, bn_mean, bn_var, num_elements_per_channel
):
# update running mean and running var. no grad, use unbiased bn var
bn_mean = bn_mean.detach()
bn_var = (
bn_var.detach() * num_elements_per_channel / (num_elements_per_channel - 1)
)
exponential_average_factor = 1 - self.bn.momentum
self.bn.running_mean *= self.bn.momentum
self.bn.running_mean += exponential_average_factor * bn_mean
self.bn.running_var *= self.bn.momentum
self.bn.running_var += exponential_average_factor * bn_var
def calc_conv_bn_qat(self, inp, approx=True):
if self.training and not approx:
conv = self.conv(inp)
bn_mean, bn_var = self.get_batch_mean_var(conv)
num_elements_per_channel = conv.size / conv.shape[1]
self.update_running_mean_and_running_var(
bn_mean, bn_var, num_elements_per_channel
)
else:
bn_mean, bn_var = self.bn.running_mean, self.bn.running_var
# get gamma and beta in BatchNorm
gamma = self.bn.weight
if gamma is None:
gamma = ones((self.bn.num_features), dtype="float32")
gamma = gamma.reshape(1, -1, 1, 1)
beta = self.bn.bias
if beta is None:
beta = zeros((self.bn.num_features), dtype="float32")
beta = beta.reshape(1, -1, 1, 1)
# conv_bias
conv_bias = self.conv.bias
if conv_bias is None:
conv_bias = zeros(self.conv._infer_bias_shape(), dtype="float32")
bn_istd = 1.0 / sqrt(bn_var + self.bn.eps)
# bn_istd = 1 / bn_std
# w_fold = gamma / bn_std * W
scale_factor = gamma * bn_istd
if self.conv.groups == 1:
w_fold = self.conv.weight * scale_factor.reshape(-1, 1, 1, 1)
else:
w_fold = self.conv.weight * scale_factor.reshape(
self.conv.groups, -1, 1, 1, 1
)
b_fold = None
if not (self.training and approx):
# b_fold = gamma * (conv_bias - bn_mean) / bn_std + beta
b_fold = beta + gamma * (conv_bias - bn_mean) * bn_istd
w_qat = self.apply_quant_weight(w_fold)
b_qat = self.apply_quant_bias(b_fold, inp, w_qat)
conv = self.conv.calc_conv(inp, w_qat, b_qat)
if not (self.training and approx):
return conv
# rescale conv to get original conv output
orig_conv = conv / scale_factor.reshape(1, -1, 1, 1)
if self.conv.bias is not None:
orig_conv = orig_conv + self.conv.bias
# calculate batch norm
conv = self.bn(orig_conv)
return conv
@classmethod
def from_float_module(cls, float_module: Float._ConvBnActivation2d):
qat_module = cls(
float_module.conv.in_channels,
float_module.conv.out_channels,
float_module.conv.kernel_size,
float_module.conv.stride,
float_module.conv.padding,
float_module.conv.dilation,
float_module.conv.groups,
float_module.conv.bias is not None,
float_module.conv.conv_mode,
float_module.conv.compute_mode,
name=float_module.name,
)
qat_module.conv.weight = float_module.conv.weight
qat_module.conv.bias = float_module.conv.bias
qat_module.bn = float_module.bn
return qat_module
[文档]class ConvBn2d(_ConvBnActivation2d):
r"""A fused :class:`~.QATModule` including :class:`~.module.Conv2d` and :class:`~.module.BatchNorm2d` with QAT support.
Could be applied with :class:`~.Observer` and :class:`~.FakeQuantize`.
"""
[文档] def forward(self, inp):
return self.apply_quant_activation(self.calc_conv_bn_qat(inp))
[文档]class ConvBnRelu2d(_ConvBnActivation2d):
r"""A fused :class:`~.QATModule` including :class:`~.module.Conv2d`, :class:`~.module.BatchNorm2d` and :func:`~.relu` with QAT support.
Could be applied with :class:`~.Observer` and :class:`~.FakeQuantize`.
"""
[文档] def forward(self, inp):
return self.apply_quant_activation(relu(self.calc_conv_bn_qat(inp)))